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Abstract-Because material junctions are commonplace on structures whose radar cross section is
of interest, it is essential that their scattering properties be adequately characterized. The stan-
dard impedance boundary condition (SIBC) has been employed in the past along with function
theoretic techniques to develop simple scattering models of material Junctions with thin and/or
high loss slabs. To extend these models to more general slabs, generalized impedance boundary
conditions (GIBCs) and generalized sheet transition conditions (GSTCs) have been proposed.
Unfortunately, the solutions obtained with these are usually non-unique in the form of unknown
constants, and although the constants have been resolved for a few special cases, previous efforts
were unable to determine them in the general case.

This report examines the problem of the plane wave diffraction by an arbitrary symmetric
two-dimensional junction, where Generalized Impedance Boundary Conditions (GIBCs) and Gen-
eralized Sheet Transition Conditions (GSTCs) are employed to simulate the slabs, In chapter 2,
GIBCs and GSTCs are constructed for multilayer planar slabs of arbitrary thickness and the
resulting GIBC/GSTC reflection coefficients are compared with exact counterparts to evaluate
the GIBCs/GSTCs. In chapter 3 the plane wave diffraction by a multilayer material slab recessed
in a perfectly conducting ground plane is formulated and solved via the Generalized Scattering
Matrix Formulation (GSMF) in conjunction with the dual integral equation approach. Various
scattering patterns are computed and validated with exact results where possible.

In chapter 4, the diffraction by a material discontinuity in a thick dielectric/ferrite slab is
considered by modelling the constituent slabs with GSTCs. A non-unique solution in terms of
unknown constants is obtained, and these constants are evaluated for the recessed slab geometry
of chapter 3 by comparison with the solution obtained therein. Several other simplified cases
are also presented and discussed. In chapter 5 an eigenfunction expansion method is introduced
to determine the unknown solution constants in the general case. This procedure is applied to
the solution of chapter 4, and scattering patterns are presented for various slab Jjunctions and
compared with alternative results where possible. Chapter six presents a short summary of this
report and some recommendations for future work.
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CHAPTER I

INTRODUCTION

The use of non-metallic materials is now commonplace on airborne vehicles. and
frequently two material slabs of different composition will abut each other to form
a junction. For example, thin radar-absorber material (RAM) strips of different .,
composition are often joined end-to-end on a metal surface for radar cross section
reduction. Also. in microstrip antenna configurations a discontinuity in substrate
composition is used to suppress unwanted surface waves and in many cases a planar
array is terminated at a metal-dielectric junction. The electromagnetic effectiveness
of structures and devices such as RAM coatings or microstrip antennas is influenced
bv the scattering behavior of any material junctions present. It is therefore important
to obtain a characterization of their behavior.

The scattering behavior of a material slab junction is revealed by an examination
of its plane wave diffraction, and this is the overall topic of the dissertation. For
discussion purposes, it 1s useful to divide these into non-penetrable and penetrable
slab junctions. The scattering problem associated with non-penetrable junctions
was aided greatly by the introduction of standard impedance boundary conditions
(SIBCs) [35], introduced to model thin metal backed coatings and layers of high

loss (see Figure 1.1). Conceptually. SIBCs are first order boundary conditions !



SIBC sheet, impedance 1

Figure 1.1: Structures modelled by SIB(s.

which replace the original material slab with an equivalent “sheet.” on which the
tangential electric and magnetic fields are related through a simple proportionality:
factor known as the “impedance” of the sheet. Alternatively, the SIBC relates the
normal field components and their normal derivatives by the same Proportionality
tactor. The SIBC model thus eliminates the need to consider the field interior to the

slab. reducing a two-medium problem to 5 one-medium one,

function theoretjc techniques such as the Weiner-Hopf method to obtain diffraction
solutions. These techniques yield a unique solution upon application of the standard

edee coudition (9], which dictates that the stored energy in the vicinity of the

‘the order of a boundary or transition condition refers to the order of the highest derivative
present when the condition s cast in its normal derivative format



discontinuity must remain finite. This two step approach in computing the diffraction
from slab junctions has been successfully exploited by many researchers (34] (18] 147,

270 130]. However. the approach is predicated on the validity of the SIBC. which is
restricted té modeling very thin and/or lossy coatings. More general slab juncrions
must therefore be characterized by other methods.

With regard to junctions formed by penetrable slabs. a close analog to the SIBC
<heet model is the “resistive” and “conductive” sheet simulation [12] {37]. These
eets are characterized by simple first order transition conditions w.aich relate the
tangential fields across the sheets. In particular, a resistive sheet (see Figure 1.2).
supports an equivalent electric current which produces a discontinuity in the tangen-
tial magnetic field across the sheet. The proportionality factor relating the tangential _
magnetic field discontinuity to the equivalent electric current is denoted as the “re-
sistivity”. Similarly, the conductive sheet model is the dual of the resistive sheet and
supports an equivalent magnetic current, with the resulting proportionality factor
denoted as the “conductivity” of the sheet. Like the SIBC models above, resis-
tive and conductive sheets models of slab half-planes and junctions are amenable
to Weiner-Hopf methods for the computation of diffraction solutions (1] [44], with
the same comments given above applying here also. We remark, however, that the
resistive and conductive sheet models are very restrictive {much more so than SIBC
models) and cannot be used unless the modeled slabs are very thin and of high per-
mittivity and/or permeability. Hence, as in the case of impenetrable slab junctions,
alternative methods are needed to model more general junctions.

One such exact approach was employed by Aoki and Uchida [3] to tackle the
problem of plane wave diffraction from a penetrable single-layer slab junction. Their

method involved rewriting the junction field components in terms of a Fourler se-
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Figure 1.2: Resistive/conductive sheet simulation of thin slab.



ries representation. This approach subsequently led to the generation ot Weiner-
Hopf equations expressed in terms of unknown spectral functions. However. explicir
expressions for these functions could not be obtained. and the resulting solution
mvolved a cumbersome iterative procedure requiring knowledge of rather complex
integrals and functions.

Another possible approach to modeling thicker and more penetrable layered dis-
continuities is to replace the SIBC aud resistive sheet transition conditions (STC

indl

by generalized impedance boundary conditions (GIBC) (13] [17] [23] and generalized
sheet transition conditions (GSTC) [59] [39], respectively. The GIBC and GSTC are
equivalent one- and two-sided sheet representations which, unlike their SIBC and
STC counterparts, display second and possibly higher order derivatives of the field .
components on the equivalent sheet. These higher order derivatives are responsi-
ble for the increased accuracy of the GIBC/GSTC relative to the SIBC/STC. and
the effectiveness of the GIBC/GSTC is roughly proportional to their order. This.
of course. implies that an adequate GIBC/GSTC modeling of any lavered material
is possible, provided that GIBC or GSTC of sufficient order are employed. Many
GIBCs and GSTCs have been derived to model all types of single and multiple layers
[59] [39] [4] [31] [43]. However, most of these GIBC/GSTC are either limited in order
(usually second) or else are only valid for specific geometries. This, of course, points
to the need for developing more general GIBC and GSTC capable of simulating a
wide variety of lavered slabs and coatings.

Once a slab junction is represented as a discontinuous GIBC/GSTC sheet, then
function-theoretic techniques may again be applied to compute the plane wave diffrac-

tion, as in the SIBC/STC case. However, function theoretic solutions based on

the application of GIBC/GSTC simulations vield solutions which are non-unique



even after the application of the standard edge condition [32] [41] [43] [36]. Also.
reciprocity is not uecessarily satisfied [14] [4] [7]. unless this condition is explic-
itly enfox‘ced. Uniqueness is required of any physical solution, whereas reciprocity
with respect to the transmitter and receiver is necessary when the scattering body
is electrically passive. As noted in [41]. one may take advantage of this inherent
non-uniqueness to force a solution which is at least reciprocal, if not unique. The
non-uniqueness of the solution is usually manifested in terms of unknown constants
41] for finite-order GIBC/GSTC and unknown entire functions (32] for infinite-order
GIBC/GSTC. Most GIBC/GSTC diffraction solutions to date have been obtained
using second order GIBC/GSTC., and some of these have put forth arguments deal-
ing with the cancellation of non-physical poles to propose a unique solution [53] [54] -
3] [5]. However. these previous efforts offer no method of determining the unknown
constants for more general GIBC/GSTC simulations.

If left unresolved. this issue would seriously impede the practical utilization of
GIBC/GSTC for a characterization of material junctions. In an attempt to resolve it,
the unknown constant appearing in a second order GIBC solution was recently related
to the field at the sheet discontinuity [42]. Unfortunately, the edge field is seldom
known apriori and this relation is not therefore of practical use. Nevertheless, it
demonstrated that a unique solution may be possible with a GIBC/GSTC simulation.
An example where it was possible to obtain a unique solution is given by Leppington
(21}, who considered the surface wave reflection by an abrupt change in slab thickness.
The slab was modelled using second order transition conditions equivalent to those
given in [39] and [39]. Leppington was able to determine the reflection coefficient
uniquely in the limiting case of vanishing thickness by matching the interior field far

from the junction with a static representation of the interior field in the vicinity of
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the junction. This suggests the possibiltiy of working with internal fields to resolve
the uniqueness issue. an approach which to date has received little attention and is
exploited herein.

The goél of this dissertation is to develop a plane wave diffraction model for
general symmetric thick multilaver slab junctions. Four main chapters follow dealing
with the derivation of the GIBC/GSTC, the formulation and formal solution of the
plane wave diffraction by certain GIBC/GSTC approximated slab junctions. and the
subsequent resolution and explanation of the non-uniqueness phenomenon described
above.

In chapter two, arbitrary order GIBC and GSTC are constructed for multilay-
ered planar slabs of arbitrary thickness. Initially, recurrence relations are derived .
for the fields in adjacent lavers and are then employed to develop infinite order
boundary/transition conditions that are conveniently expressed as a matrix product.
Approximations to the matrix element operators for low and high contrast materi-
als are subsequently employed to obtain finite order boundary/transition conditions.
Finally, numerical results are presented in which the exact reflection coeflicients are
compared with those implied by the GIBC/GSTC to provide a measure of the con-
ditions’ accuracy and utility.

In chapter three, the plane wave diffraction by a multilayer material slab recessed
in a perfectly conducting ground plane is formulated and solved via the Generalized
Scattering Matrix Formulation (GSMF) in conjunction with the dual integral equa-
tion approach. This problem is significant in that a unique GIBC solution is obtained
which can be used as a benchmark to test other GIBC/GSTC solutions. In the first
part of the chapter we summarize the GSMF procedure. The dual integral equation

method is then employed to formulate each of the subproblems and the necessarv
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solutions are obtained for both E. and H, polarizations. These are given in terms of
symbolic split functions which are then evaluated for the specific case of a multilaver
grounded slab by casting the reflection coefficient in a form compatible with a GIBC
simulation of chapter two. A number of scattering patterns are presented and the
accuracy of the GIBC simulation is examined by comparison witk known results for
homogeneous slabs.

In chapter four. the diffraction by a material discontinuity in a thick dielec-
tric/ferrite slab is considered by modelling the slab as a distributed current sheet
obeving generalized sheet transition conditions (GSTC). In the first section of the

chapter, the GSTC representation of the distributed sheet discontinuity is used to

develop dual integral equations in terms of the unknown spectral functions propor- -

tional to the sheet currents. These equations are then solved in the standard manner
to vield expressions for the spectral functions in terms of unknown constants. The
constants are dependent on the geometry and properties of the discontinuity, and
are identified in this chapter for a few specific discontinuous layers whose diffraction
solution is available.

Chapter five deals specifically with the determinazion of the unknown constants
for the solution presented in chapter four. This is accomplished by introducing a gen-
eral eigenfunction expansion which is valid everywhere and subsequently recasting
the solution obtained in chapter four into this format. This field is then analytically
continued to the slab interior and continuity is applied at the material junction to
provide the remaining constraints for determining the unknown constants. Specif-
ically a point matching scheme is proposed in which an overdetermined system of
equations is generated and solved for the constants using a least-squares technicpie.

Various diffraction patterns are given validating the obtained solution for certain «li-



electric half-planes and metal-diel

ectric junctions on a ground plane. Finally curves

are given for various thick half-planes and junctions to illustrate their diffraction

behavior as a function of thickness.



CHAPTER II

DERIVATION OF GENERALIZED
TRANSITION/BOUNDARY CONDITIONS
FOR. FLANAR MULTIPLE LAYER
STRUCTURES

A GIBC/GSTC diffraction coefficient can only be as good or as versatile as its )
constituent GIBC/GSTC. Therefore, before diffraction coefficients of any generality
can be developed it is necessary to construct GIBC/GSTC which are valid across all
ranges of slab composition and thickness, and this is the task of this chapter. The two
configurations considered herein are the multilayered slab having symmetric or non-
svmmetric material composition (about its center) and the multilayered coating on a
ground plane, as illustrated in Figures 2.1 and 2.2(a), respectively. The derivation
of the GIBC/GSTC is accomplished via the Taylor series expansion method, whose
versatility enables the treatment of non-planar as well as planar layers. In effect,
the resulting conditions allow the simulation of the multilayered configuration as an
opaque or transparent sheet (see Figures 2.2(b) and 2.3(b), respectively).

In proceeding with the development of the GIBC/GSTC, we initially derive re-
currence relations for the fields in adjacent layers. These are subsequently emploved
to develop infinite order boundary/transition conditions that are convenientlv ex-

pressed as a matrix product. Approximations to the matrix element operators for

10
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Figure 2.1: Infinite multilayer slab.
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Fioure 2.3: fa) Zero thickness resistive and conductive sheet similation of multilayer
slab. (b) Distributed resistive and conductive sheet simulation of multi-

laver slab.
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low and high contrast materials then lead to finite order boundary conditions. Fi-
nally. numerical results are presented in which the exact reflection coefficients are
compared with those implied by the GIBC/GSTC to provide a measure of the con-

ditions” accuracy and utility.
2.1 Derivation of Infinite Order Conditions

Conzider the multiple laver slab with Vi upper layers (y > 0) and N lower lavers
(y < 0) as illustrated in Figure 2.1. The physical parameters corresponding to the
n'™ upper laver are denoted by €%, ul. k% .7l which refer to the relative permittivity
and permeability, the index of refraction and the layer thickness. respectively. In
a similar manner, the physical parameters corresponding to the m** lower laver are .
given by €& pub xL L In the followi ing we derive transition conditions to effectively
replace their presence with a distributed current sheet. We begin this derivation by
first introducing a relation between the fields on the two sides of a single layer. This
is generalized to relate the fields of distant layers and those at the upper and lower

boundaries of the fictitious current sheet. For convenience, we may consider both

polarizations simultaneously by introducing the definitions

E,, E, polarization (H, = 0)
F, =
H,, H, polarization (E, = 0)
¢, FE, polarization
u = : (2.1)
i, H, polarization

Using a Taylor series expansion, the normal field components at the top and

bottom of the m* upper layer may be related as

o0
]k"'m SUE
llmFyJ y__ +.,, _+_ +( v 1)+ = um Z y y‘r y=r U+ +? 1+(Tr(;1/)_ (32)
(=0 .
N J Tm) 1+1 9
Sl e = Ll % Felvetereiint g 23
=0



where
= =71 40" (2.4}
and ¢, is an operator defined as
| S _J 9 i
8, = - '2.')\!

Clearly. (2.2) - (2.3) provide relations of the fields within a single layer and if we are
to derive a condition relating the fields at the top and/or lower surface of the slab.
it is necessarv to establish similar relations among the flelds in different lav=rs. As a
firet step towards this goal we may proceed to express the right hand sides of (2.2)
and (2.3) in terms of the fields above the boundary y = P+ .+ L. To do so.
it is instructive to resolve the right hand sides of (2.2) and (2.3) into a summation
of odd and even derivatives of F,. Subsequently, the wave equation may be invoked :

to rewrite the normal derivatives in tangential form, thus allowing the application of

the field continuity conditions. We have

82 = el pn, — &7, (2.6)
with
6l =846 (2.7)
where
j d
b = =—
k Oz
Jj 0
6, = =—. 2.8
k oz (2:3)

Invoking now the continuity of u,, F, and 6LFy (including their tangential derivatives)

across the laver boundaries, (2.2) and (2.3) may be rewritten as

A U U ;
)t = QU(um?K‘U T 6?) : F.J y=T1U+7'2U+‘..+(T£,;)+' (20)

FJ y:rf'+f§'r+...+(r£_:_l

m* "m?
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sin (kgr\/fcz — bz>
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K — &7

= Ju
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Expressions relating the normal fields in adjacent lower lavers may be obtained

in a similar manner. We have.

FJ L 2[. - L )+

T
m-1

where now

@L(U- K. T, 5:2)

Equations (2.9) - (2.14)

= éL(ur[:w’”r[;anLw‘Sez) FJy:—f‘L—'zL— —(rL)+ (2.13)
qll(usKth(S?) _q12(u!’{1‘r’ 622)
- (2.14)

—qn(u, K, T, 5?) qa2(u, K, 7, 53)

constitute fundamental recurrence relations for devel-

oping multilayer GIBC/GSTC. Each of the q11,¢12, €tc. 1s an infinite-order linear

differential operator in even powers of é6%. This is evident when the sin and cos terms

are cast in their Taylor series

pearing in (2.12) do not have

representation (note that the square root functions ap-

branch cuts). The finite-order boundary conditions are

then derived by truncating the Taylor series representation of q11, 12, 21, and 9.

Applying (2.9) and (2.13

fields at the top and bottom

N
m=1

O

L(u,[;l, rci, T 63) . FJ

) recursively, we may establish a relation between the

of the layer. We have

L )+ = FJy:O_ ‘ll.)“

m
‘VL

y:—‘rl‘"—rzl‘—...—(r
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T2 I . . . ___ I o s
| H cima e ’ 4y=’f+rt +,,.1-(T§’v = FJ!J=O" (2,161
=1

and since I is continuous across y = 0. (2.13) - (2.16) imply the GSTC condition

|8}
—
-1

L os2 .
H QL '6t) ’ F_? y:—rlL—rzL—..A—(r"‘, )+ (

Ny -
A U U U g2 =
= H Q m Mo m,ét) : F_J y=1'1U+rU+...+(r.L,rv)+

The part of the slab occupying yWeay<t+V+.04 TRCU may now be replaced
by the upper backgronnd medium (with its geometrical and material parameters
denoted by tlhe subscript b and the superscript {7) while the part of the slab occupying
yb>y>—rt—rf—.. . - TA{T-L is replaced by the lower background material (with
geometrical and material parameters denoted by the subscript b and the superscript
L). Using a Taylor series expansion the boundary fields may be related to the

/

equivalent fields at y = y¥ and y = yL. In so doing, we obtain

@!'

) (ub"cbv‘rbvé) F Jy=yL

[

@
Ny _ y .
H Q an’ K T :\ Q ubv"“bv‘b 62) F, Jy=yU‘ (:

2.13)
where
N
L
TbL = Z Tl —_
=1
J\'U
o= Y=Y (2.19)

Although compact, the transition conditions (2.18) provide little insight into the
plivsics they represent. It is therefore instructive to reorganize them in a form that
leads to its physical interpretation. To this end we introduce the definitions

e 62) e ((52)

= ) = def ll(t 12\t
QL(féaKan*TnI;ﬂbtz) QU(elvabL’TbLséf) = s e oo
m=l 2(67)  L£5(07)



h 2
T N L _L 2, def £nlé)
Qrlpg rp m2 85| Qp By Ky, T, 87) = o
m=1 FN;\MV
\e e g.u.v
- . 114¢;
L O U 2 ooU L 2 def
Qﬁh,m‘:.?ﬁ ﬂi,OL Qhﬂmo,)\oiv .wnv = o
"= U3,007)
[y B ot N%Z\@mw
| A U U 2 A v U_U ¢2 et
h: Qm._,t«:.\»ﬂ.ﬂﬂ.%uu @hﬁtw,?viw u%_v = .
= (67)

Substituting these into (2.18) vields
[CL+ UL (L5, +ULNEE) Y ( AFs

Lo + UL [L5 + UL (63) ARy
(L] — Qm:omv ﬁ 12— N\EQU Me
F,m — U5 J(8F) (L5, — U682 J*
£h

H

H.ﬁ.m\:% v +N\ Z%U D.ﬁ.,:

ﬁ 1+ N\N:awv _hwm + m\%u:%mv Pm&:
(L1 —UyJ(]) (Ll —Up](6D) J*
hw» - N\wﬁ:mwv FWN - N\m@:mmv At

In (2.21) -(2.22) AF5" and AFE are given as

AF; = Ef —€efE; = m.@ 8, X E.w - HS
Jw
AFy = §[Ef -E;] = -4 [Ef - E7]
ARy = pf HY —uf H; = nlﬁ.m} Ewlm
J<
AF} = & [Hy - H;| =6 (87 - ],
whereas M°" and J*" are defined as
1 _ _ _
M* = eEf +efE; = —j -5, x (A + A/
Je
J° = &, |Ef +E;| = -6, [Ef + /]
Jh = tcm.fn.rthml “%MHXTM.T.TWM
J<

MY = 6 (B H = -8, (B + a7l

o
o
(]
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in which

E. Y Ei+Ey
H ¥ H.i+Hyj
def e
E+ & EquFyU

— def  peg
E; = EJ],=p

4+ def eq .
HY = HJ -

—  def eq 9 95
HS = Hj,zy. (2.25)

We also note that the superscript notation e and A refer to E, and H, polarized
excitations. respectively.

In view of (2.24). the transition conditions given by (2.21) and (2.22) are now
readilv interpreted as a representation of “distributed” resistive and conductive sheets
occupving the volume y% < y < y& and supporting equivalent electric and magnetic
currents (see Figure 2.3a). These, of course, give rise to discontinuities in the fields
(and their tangential derivatives) at the upper and lower boundary of the sheets. The
equivalent electric and magnetic currents are denoted by Je* and M, respectively,
and are defined in (2.24) above. Additionally, the subscripts J and A appearing
in (2.23) denote field discontinuities traditionally associated with the presence of
electric or magnetic currents, respectively. For convenience, the currents and result-
ing discontinuities AF are presented in terms of both normal and tangential fields.
When y¥ = 0% and yL = 0~ (see Figure 2.3b), the distributed resistive and con-
ductive sheets are “compressed” onto an infinitely thin sheet occupying the plane
y = 0. Such thin sheet representations are attractive for the application of transform

techniques in diffraction problems and are generalizations of the resistive-conductive
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sheet simulations given in [59]. [39] and [31]. In contrast to the referenced st
lations. the ones given here exhibit coupled electric and magunetic currents. whose
presence complicates the application of analytical techniques. This coupling is at-
rributable fo the distributed nature of the polarization currents across the original
slab configuration. If. however. the multilayered slab is symmetric about y =0 and
u® = —yL. then it can be shown that M and J decouple. In particular. for this

special case

Ly = Uy
1:12 = Uy
£21 = —u21
Lo = Uy, (2.26)
leading to
ULEAFSY = —U(eH{T7}
UR(E{AFS) = —us(8H{ M)
UL S{AF} = —ub(sH{M*H
Un(E{AFT} = ~Up(eH{J*") (2.27)
when substituted into (2.21) and (2.22). Evidently, the coupling of the current

components depends on the degree of asymmetry in the slab and an assessment on
the level of coupling can be obtained by comparing the magnitude of the operator
coeflicients in Ly — Uy, L1 + Uya, Loy + Uz and Loy — Uy, relative to those in
Lo+ U, Lig = Uia, Loy — Uy and Lop + Us,.

If a ground plane is inserted in the symmetric slab at y = 0, the resulting structure

becomes opaque and its sheet simulation is further simplified. For the case where the
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ground plane is a perfect electric conductor (PEC), the electric currents are shorted
out and the second and third equations of (2.27) become the boundary conditions
corresponding to a coated PEC. Conversely, a perfect magnetic conductor (PMC]
shorts out rhe magnetic currents, leaving the first and fourth equations of (2.27) as
the corresponding sheet simulation. An alternative approach to deriving the GIBC
corresponding to coatings is to employ image theory in conjunction with (2.27). The
field components in the equivalent image configuration of a PEC grounded slab ave

related as

E(y>0) = E/(y<0)

6yEy(U >0) = —6yEy(y < 0)
Hyy>0) = —H,y<0)
§,H,(y >0) = 6,H,(y<0) (2.23)

and when these are subsequently introduced in (2.27) we obtain the boundary con-

ditions

es Us (6 EY T + U (6){8,ES}

Il
o

psURSH{HTY + USBEH{8,HF} = 0. (2.29)

corresponding to a slab on a PEC. Similarly, the image fields for a slab on a PMC

satisfy the relations

E,y>0) = —-E(y< 0)
6B, (y > 0) = &FE,(y< 0)
H(y>0) = H,(y<0)

S,H,(y>0) = —6,H,(y<0) (2300



which lead to

UL S{ES Y + ULSH{E,EF} = 0

uE U (S {H] ) + UBSH{6,H)} = 0. (231

when substituted in (2.27). Expressions (2.29) and (2.31) represent opaque conduc-
tive and resistive sheets, respectively, and are the dual of each other. We note that
if Npo = 1. (2.29) redcce to those given in [31].

To sununarize the above development, sheet simulations were derived that mode]
(or replace the presence of ) the multilayer slab and coating. Equations (2.21) through
(2.27) are referred to as generalized sheet transition conditions (GSTC) for the
transparent resistive/conductive sheet representation of the multilayered slab. On .
the other hand, equations (2.29) and (2.31) are described as generalized impedance
boundary conditions (GIBC) -~ the opaque sheet representation of the coated ground
plane. They are given in a compact matrix form and are valid for any arbitrarv finite
number of layers. Their versatility, however, is offset by the presence of infinite order
derivatives as implied by the definition of the operators, thus, limiting their applica-
bility to analytical and numerical treatments. It is therefore appropriate to consider
finite order approximations of the operators leading to conditions of practical use.

In the following we consider such approximations of the operators on the assumption

of low contrast (small ) and high contrast (large x) layers or coatings.

2.2 Low and High Contrast Approximations for Matrix El-
ement Operators

Low contrast approximations to the matrix element operators may be derived

by replacing the trigonometric functions in (2.12) by their Taylor series expansions
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which are then truncated. To O(7") these become

nt( ) 1112(‘\31-)

_, s ‘ Y
iR T8 = galuaR T e R Z ay(k, 7. l.m) (é;)

(=0 m={

int(.\lz—l ) int(.\!;l)

Z az(k, 7, l,m) <5f)l

=0 m=l

2
S
]

Gral U KT, 0:2)

[
[ V)
=
=
>
A
>
e
"
2
= |~

where

(__1)l+m(m)1(ku )me{ 2(m—-1)
(m = DY 2m)!
(_I)H-m(m) (k T)2m+1 2(m-1)
(m = DUD(2m + 1)
( )H—m( )'(k )2m 1.“(m—1)

as(k, 7, {,im) = — o DD em = 1) . (2.33)

a(xk, 7. l,m) =

ax(k, 7, l.om) =

It is a simple matter to demonstrate that the substitutions

jo W
o
=~

K

K — k2 — K}
(53 — —53 (2.3—1)
applied to (2.32) lead to a normal derivative representation of g1 — ¢z2.

To obtain high contrast (large x) approximations for g;;, it is necessary to utilize

tlhe binomial expansion

‘ 1 (86, 1 (6N 13 [6&)\° &
v"‘“@?”[lﬁ(‘) '5.—;(—) -9.4.6(‘) —} NI

[
(2.35)

Substituting this into (2.12) and again employing a Taylor series representation for
g g pioying ¥ p

the trigonometric functions. we obtain to O(xk~=*) the approximations

U 6,2\ ~ cos(k,TK)
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As Af
‘ Ti(l.k. 7)Y (1.0.p) 2\ P
x| 3 Blheorieal

p=1 | l=maz{l.2p-MM}
Ju .

— sin{k,7K)
IS

M-1T M1 ‘
Y 3 Tz(l,x.r)r(z.o.p)} (2

<2p+1-1
p=1 [i=maz{1.2p-M+1} .

AR

Gralu.N.T o))

o

M2 =2 T(l =1,k 7)T({—-1,1.p)
. 2 s s 1 1.p 2\ 7
+~Ju Z Z Klp+2-l (51)
P=1 [U=maz{l,2p—M+2}
gnlu. k.7, 8}) = ESiﬂ(koT"ﬂ)
U

AVES N Vi ‘ .
g S Tg(_z.h.,)uz,o.p)} (53

Lo K2p=1-! ¢

b=l i_[:mur{l,’lp—;’\!—l}

Y M ‘
J Tyl - 1.k, 7)Y (L0, p) P .
-4 [ ) o (67) (2.36)
p=1 |l=maz{l.2p-M}
where
o : (=1)m 2 (e 7y (COS(k‘OTK.) s even]
LR T = -
(0)! sin (k,75) ;[ 1s odd
S ) (_l)int(l/Q)(koT)I sin (k,7K) T even]
v(\‘.l\ T =
(0 —cos (ko7k) ;[ 1is odd
T{hlp) = Z bi(21)b1(d2) - - - b1(i11)bz(i11+1) T bz(i11+12)
(2p = 3)!!
bip) = 2P p]
(2p— 1)
bip) = 37
Xt X(X -2 (X -4)...(3)(1) ; (=) (2.37)

The sum defining the function T (I}, /2, p) includes all product terms satisfyving the
relation 3~ ¢, = p. It should also be noted that /; and /, denote the number of b,
and b,. respectively, comprising the product terms. For example, if [y =2, {, =1
and p =3 then Y(2,1,3) = by(1)bi(1)by(1); if ; = 2, Iy = 1 and p = 4 then
T(2014) = 51(2)by(1)ba(1) + by(1)b1(2)by(1) + by(1)by(1)bo(2) and if [, = 2. 1, = 0

and p = 4 then Y (2.0.4) = b;(1)b6,(3) + b1(2)b1(2) + 51(3)by(1). Corresponding



Order | Low contrast ¢;, coefficients T
3] .

1 dir = qn=1.0q02 = qu =0

’11 quu=qn = l.qun = juikT. g = ﬁkﬁ (87— 55)

A
Lol 3

- Y " . y b o
g = g o= 1= B3 (02— 60). qia = JushTys gu = Lhr (87 = 80

4

e 12, o 2, o 5]
7 i =qn=1- “—;‘(H‘ &3), qu2 = jurkmy {1 - L——M‘ OE)J;
. 9 )2
qn = Jkmi(8* =80 fw [1 - L%L("'Q - 53)]
Ty m=qn=1- [’k'—_»”z (= &8) + Lq (w? =87 :

dor = kT (8= 6 fug [1 = Bl - )]

Table 2.1: Low constrast approximations to ¢;; operators.

expressions in terms of normal derivatives can also be obtained by employving (2.34)
in 12.36).

Expressions (2.32) - (2.37) represent finite order approximations to the operators
qi1.G12- Q21 and qgg, and can be used to generate finite order GIBC or GSTC. To
do so for a specific multilayered slab or coating, one first examines each constituent
laver and approximates the corresponding matrix elements by their low contrast
expressions (2.32) - (2.33) or high contrast expressions (2.36) - (2.37), as appropriate.
As an example, basic low contrast and high constrast approximations to the g;;
operators are give in Tables 2.1 and 2.2. These finite order expressions are then
substituted into the matrices @U and Q:)L given by (2.11) - (2.14). The resulting
expressions for the i and £ matrix operators are finite polynomials in even powers
of 62, In passing, we note that the simulations presented here-in may also be extended
to model a longitudinally inhomogeneous slab once this is approximated as a layered

slab such as that shown in Figure 2.1.
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Order | High constrast ¢;; coefficients
{

w0 q11 = q22 = cos (kkT1). 12 = O.gyy = 'ZfSiP lkkT ) — sz_rulq‘COS("fle)
kot J11 = Q22 = cos (kkTy) + sin (kkTy) 1271 qi2 = 'L:‘LSiH(KZk‘Tl)
q21 = L sin (wkmy) {l - 2—:% - (kg::a} - jk;:f? cos (KkTy)
KT (1112(122=Cos(~k71){1— 1””5 }+sm kkT )k%ﬁ
q12 = <L sin (nh7) — '"’Z—k;‘icos(fckrl),
421 = "—blﬂ (k7)) {l — 2'(2 %):—bz}
— = cos (kkTy) {k;ff - k;;f: - (k:gl?ts}
wo? q11 = g22 = cos (rkTy) {1 - (km254}

8x2

Lo e km &2 kT 84 (k7 )38
Tbln(hle){ 2#:[ + 8n3£ - 48n3£ i

; : §2 kr )25t Jurkr 82
q12 = ¥ sin (kkTy) {1 + 357 - ( 3 ‘} — 55—~ cos (kkT)),

2K
. 82 (k7 )25t (kT 1458
— 15 _ 1 — {kr )®67
qn = u1 sin (Kkrl) {]‘ 252 852 8&‘ 388x1 }

' k& knst (kn )8
= n& _ kngt  (kn)°6
uy cos (Kle) 2% 8x3 48x3 }’

Table 2.2: High constrast approximations to q.; operators.
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Figure 2.4: Coordinate system for reflection and transmission coefficient derivation.

2.3 Evaluation of the Boundary/Transition Conditions

To evaluate the accuracy of the derived boundary/transition conditions one ap-
proach is to compare the plane wave reflection and transmission coefficients implied

by the finite order sheet simulation with the corresponding exact coeflicients.

Consider the plane wave

E Ey
Y _ ejkxg(rcosasin@+ysina+zcosacosﬁ) (
H: Hyo

incident upon the sheet satisfying a given GIBC or GSTC (see Figure 2.4). The

o
(o]
oD

generated reflected field can then be written as

E] RegEy e ' _
— e]knb (x cos a sin 3—y sina+2z cos o cos 3) (').3‘.”
H; RuHyo



and in the case of a GSTC, the transmitted field takes the form
; TbE‘L’U k L ' sin 3 < [ ‘ 1
_ el ry(rcosa’sind' -ysina'+2cosa cosJ). (.3._“).
, o
H; IuH,
To find the reflection coefficients Rg g and corresponding transmission coefficients
Tg rr we substitute (2.38) - (2.40) into one of the boundary or transition conditions

given by (2.21). (2.22), (2.27), (2.29) or (2.31). By carrying out the differentiations

in a straightforward manner we find

R*#c R;mc—ﬁge:R;mc : .
Rer R multilayer slab
SR+ iR multilayer symmetric slah
R = Pee pme ) (2.41)
RE.. multilayer coating on PEC
RS e multilayer coating on PMC
R%,.— RS :
I E:L&m multilayver slab
Tg = pec ~Hpme (2.42)
sRe. — sRe.. multilayer symmetric slab
h
Rl’"“ hec =R R2 multilayer slab
pec Rpmc
th 1Rh multilayer symmetric slab
RH — pmc pec N (2 43)
R’ multilayer coating on PEC
h Naxr : \
| Rpme multilayer coating on PMC
2~ Ltilayer slab
3 -7 mulitilaver sla R
Ty = s (2.44)
‘ -;-Rgmc %Rgec multilayer symmetric slab.

U e[.U’z 2 Ue[U2 2]
i — o
R Ky sina U3, [(ky )? cos?a g U3 |(ky)? cos o ei2ksyY sina
pec — U

5
Kg sina Us, [(kf)2 cos? a] + efUs, [(kY)2 cos? a

y KE sina US ((hg
1 = U

e
o]
O
w

(¥
o)
™
oy
ot
st
o

—
x

o

~—
=]
Qo
2]

(%}
R

j?k»:gyU sin o

PR sina UG (k)2 cos? a] + VUt [(xY)? cos? al
Lo e Uy2 2 _ L e v 2 .
fe ny sina’ L5, {(,‘cb) oS a] e L5, [ Ky )% cos a] GH[eEyE simat 4 i
Pk sina UG [(kY)2 cos? a] + €UUg (k)2 cos?a]



2 24— cLre (kU2 cos?
B sin & Lnl(rcb) cos a] ey L; [(nb) cos a] (bt sina’4xf 3¢ sin a]
pme n% sina UE, L(mg y2cos? al + eEUp [(k5)? cos® af
N 2 el ' : 2
o Wy sina iy (n; t2 cos a] — uUy ](M(g )? cos? a} Jakl 3 sina
! = ) [ : A o) €
1 K osina U (wE ) costal b Uy [(r])F cos® @
U ([t 2 1 Uzgh U2 o2
ph = Ky sln o U |(#5 )7 cos al oy Uy l(n,,) cos a} kel s sima
pme T Usina U [(kE )2 cos?a] + ubZ/{n [(x})?cos?al
r ok U [ UV2 cog2
[ Ky sina' L7, L(nb) cos* a} l( 5y )¢ cos a] eﬂc{ﬂgzﬁsina'+~§'yﬁ'sina}
pee kEsina U (k) cos?a] + uy L{“ [(kE)2 cos? a]
Laonnal o [(ely2 _ UN2 02
B Ky sina’ Ly, [(nb) cos a} ,ub {(n ) cos a} k(< yE sima < 47 sins]
pme kY sina U [(ng) cos?a) + uf U [(K5)? cos? a
(2.43)
an ' “rom Snell's law
KEsina = \/(nbL) — (n§)2cos?a. (2.46)

To obtain a composite sheet simulation of a multilayer slab or coating. it is
necessary to first model each layer individually through its Q. matrix. The matrices
are subsequently combined to yield the £ and U operators of the composite boundary
condition. Thus, the accuracy of the overall simulation can be assessed by examining
that of the individual lavers comprising the slab or coating. In the case of a single
laver simulation (with non-shifted surface) the £ and If operators reduce to £y =
L3 =1, L12 = L£2; = 0 and U,; = ¢i;. This simplifies the analysis and in the
following we examine the accuracy of the proposed GSTC simulation as a function
of the condition’s order. Only the E,-polarization incidence is discussed but similar
results apply to the H,-polarization case as well.

Figures 2.5, 2.6, 2.7 and 2.8 present the maximum error in |Rer — Ryste

over
real angles as the layer thickness is varied. The data in Figure 2.5 corresponds to
a low contrast simulation with ¢, = 2 and g, = 1.2 as the order of the transition

condition increases from 2 to 9. In the region where |R., — R .| is less than .15
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(to be considered as ap acceptable error) each curve displays a quadratic shape.

ssiblv with small “kinks™ or ‘turbatj S ' d' Ing l. the rance of
POsstbiv with small “kinks™ or perturbations superimposed!. I general. the range of
the simulation improves as the order Increases. although in certain instances it may

actually deteriorate slightly.

as in Figure 2.3 is smaller when employing the same order transition condition. [p
particular, the degradation is such that a 17t order condition is required to equal
tlie performance of the 10 order condition in Figure 2.5. As before the maximum
allowable thickness oy performance of the condition increases with the order.

To compare the performance of the low and high contrast approximations, the .
curves in Figures 2.5 and 2.6 Were recomputed using high contrast transition con-
ditions. The results are given in Figures 2.7 and 2.8 where the curves now follow
an oscillatory behavior unique to the high contrast conditions. In general, the high
contrast conditions provide an improved simulation for this choice of constitytive
parameters. For example, when the order of the condition is increased from 4 to 12,
the allowable thickness that can be accurately simulated Increases 7-fold, signiﬁcantly
better than the performance of the low contrast conditions. Most importantly, the
high contrast conditions allow the simulation of much thicker layers with the same
error criteria. A typical example are the 11%* and 10t order simulations in Fig-
ure 2.6 and 2.7. respectively; whereas the low contrast simulation allows a maximum
thickness of only 0.28A, this increases to beyond 1) when employing a high contrast
condition of comparable order. Inherent with their derivation, the high contrast

conditions are expected to provide improved simulations as the refractive index ip-

'Asa reference, when [Rey — Ryye| = 1743, the corresponding phase error s 10° when [Ryger! =

Ryl = 1.
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creases. This is indeed observed in Figure 2.3 where the layer’s relative constitutive
parameters are €, = 5 and p, = 3. As shown, a layer of up to 2A thick can be
accurately simulated with a 12t order condition. Figures 2.5, 2.6, 2.7 and 2.8 are
recotnputed for H, polarization in Figures 2.9, 2.10, 2.11 and 2.12. respectively. The
results are very similar to the E, polarization case. and the same remarks made
above are applicable here.

Using the single layer data, sucl: as those presented in Figure 2.5-2.12. it is pos-
sible to synthesize a muiulayer simulation. As an example, consider an E, polarized
U

plane wave incident on a three layer slab having ¢/ =5 — j0, pd =3-;0, 7V =4

for the first layer, €5 = 3.5 — j0, u§f = 2 — 50, 7 = .4 for the second layer and
el =2 —,0, 45 =1.2~50, ¥ = .2 for the last top layer (see Figure 2.13). To -

select the individual layer models for £, polarization we conjecture that the maxi-

mum error of |R.; — Rys.| for the composite sheet will be bounded by the sum of
the maximum errors of | R, — Rgs:.| of the constituent layers in isolation. Examining
Figures 2.3-2.8, we observe that the sum of the errors of the 6" order high con-
trast representations of the bottom and middle layers and the 5t order low contrast
representation of the top layer amounts to .062 as required by the design criteria.
This suggests that the composite sheet employing these representations will have an
acceptable performance when the total thickness is 1A. The actual maximum error
of the designed simulation is compared with the sum of the isolated layer errors in
Figures 2.13. The corresponding errors with a PEC and a PMC inserted at y = 0

are also plotted in Figures 2.14 and 2.15. We note that the sum of the isolated layer

errors serves as a reasonable upper bound for the new simulation design.
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2.4 Concluding Remarks

This chapter has dealt with the development of generalized impedance boundary
and transition conditions for multilayer coatings and layers. A major effort was also
devoted to present them in a form which is compact and convenient for further usage.
Because of the generality of the derived conditions they are ideally suited for use in

the following ¢ ~pters where general diffraction coefficients are developed.



CHAPTER III

DIFFRACTION BY A MULTILAYER SLAB
RECESSED IN A GROUND PLANE VIA
GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS

The canonical geometry formed by two semi-infinite planar slabs joined end-to- -
end is a difficult one to model properly, particularly if the slabs are thick. For this
reason very few computed results exist to verify GIBC/GSTC diffraction solutions
obtained for thick slab junctions. This need is addressed herein by computing a
unique alternative GIBC/GSTC solution for a specialized thick slab geometry. This
solution provides a benchmark which can be used to partially verifv more general
GIBC/GSTC diffraction solutions. The special problem considered in this chapter
is the plane wave diffraction by a multilayer slab recessed in a ground plane in
Figure 3.1, and the alternative method used is the generalized scattering matrix
formulation (GSMF) [25].

Related but simpler geometries have been studied in the past (2] [6] [20] [11] [26]
(3] [43] [9] [52] [38] [28], and most of these solutions involved the interior and exterior
fields. This is alleviated herein by modeling the slab as a surface characterized by a
plane wave reflection coefficient R(cos ¢,) (see Figure 3.1), where ¢, can be extended

through analytic continuation in the complex plane. This enables us to carryv out
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material layers

| I

Figure 3.1: (a) Multilayer slab recessed in a PEC ground plane. (b) Representation
of slab as surface with reflection coefficient R.

the analysis in a symbolic manner regardless of the inhomogeneity profile of the
layer. Hence, although our focus in this chapter is the multilayer recessed slab, the
derivations will be applicable to any vertically inhomogeneous slab.

The problem herein is formulated via the dual integral equation approach {10} in
conjunction with the GSMF. The GSMF is applied to the recessed stub structure
of Figure 3.2(a), depicting a perfectly conducting half plane elevated a distance é
above a reflecting surface with a perfectly conducting stub recessed a distance d
away from the half plane edge. This formulation requires the solution to a number of
individual subproblems. As illustrated in Figure 3.2(b)-(f), they correspond to the

problems of direct diffraction, mode coupling, mode reflection, and mode radiation.
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Figure 3.2: Illustration of recessed stub geometry (a) and associated subproblems:

(b) direct diffraction, (c¢) mode coupling, (d) stub reflection, (e) mode
reflection at the waveguide mouth, (f) mode launching.
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Once solutions to each of these subproblems have been obtained via the dual integral
equation method, they can be combined in accordance with the GSMF prescription
to vield the diffraction for the original structure in Figure 3.1(a).

L’nfortuhately. the ‘conversion of the symbolic solution into one of practical use
proves to be a formidable task when the reflection coefficient of the grounded slab is

obtained in its exact form. The fundamental difficulties are related to:

e the factorization or splitting of the associated Weiner-Hopf functions into com-

ponents regnlar ‘n the upper and lower half complex plane, and

e the extraction of the complex zeros (i.e., the waveguide modes) associated with

the split functions.

The pertinent Weiner-Hopf functions cannot be factored analytically a~d one must
therefore resort to a numerical scheme (e.g., see [28]). Also, in solving for the complex
roots of the pertinent split functions, it is necessary to employ a search algorithm in
the complex plane, a process which is numerically intensive. We circumvent these
difficulties by replacing the grounded slab by an opaque sheet satisfying a GIBC of the
form given in chapter two. Under a GIBC approximation, the approximate reflection
coefficient is cast as a ratio of polynomials in cos ¢ or sin ¢, making the determination
of the complex poles and zeros of the reflection coefficient a simple task. As a
result, the required Weiner-Hopf factorizations can be obtained analytically leading
to computationally efficient solutions.

In the first part of the chapter the GSMF procedure is summarized. The dual
integral equation method is subsequently employed to formulate each of the sub-
problems and the necessary solutions are obtained for both E; and H, polarizations.

These are given in terms of symbolic split functions which are then evaluated for the
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specific case of a multilayer grounded slab by casting the reflection coefficient in a
form compatible with a GIBC simulation of the slab given in chapter two. Results
are given and the accuracy of the GIBC simulation is examined by comparison with

known results for homogeneous slabs.

3.1 Description of GSMF Procedure

In this section, the generalized scattering matrix formulation (GSMF) is applied
to the geometry given in Figure % 2 4. This consists of a perfectly conducting half-
plane located a dis*= <o & abuve the grounded slab, with a perfectly conducting stub
recessed a distance d away from the half-plane edge. To concurrently treat both the
E. and H. polarizations of incidence, the quantities F, and F. are introduced. They .

are defined as

E., E., polarization,
F, = (3.1)
Z,H,, H, polarization.
Z,H., E, polarization,
F, = (3.2)
E., H. polarization.
and from Maxwell’s equations
j’Ul an q
For=—-—— 3.3
k oy (3.3)
where
-1, FE, polarization,
v = (34)
1, H, polarization.

The individual problems to be considered in the GSMF prescription [23] are as

follows:

L. Evaluation of the direct diffracted field by the substructure in Figure 3.2(b)

due to a plane wave incidence. This field can be expressed as

F(¢,0,) :/ Pya (cos a, cos ¢,; 6) e 7 Hereos(a=?)gq R
C
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where Pj; is the spectrum associated with the currents induced on the half
plane and (p. o) are the usual cvlindrical coordinates of the observation point.
Additionally. C is the complex contour composed of the directed line segments

0 - jx.O —j0L.70— ;0,7 — jO],[x — 70,7 + joc] in the complex a plane.

2. Evaluation of the field coupled into the waveguide due to a plane wave incidence

(Figure 3.2(c)) as illustrated. We denote the field corresponding to the ntt

coupled mode as

FS (0,) = (', (cos 6,;6) e™7*n® (3.6)

n

where C, (cos 6,:8) is usually referred to as the coupling coefficient and £, is

the propagation constant associated with the n** mode.

3. Evaluation of the modal field reflected at the stub (Figure 3.2(d)). This can

be expressed as [',,¢/*"% where [, is the stub reflection coefficient of the n'"

th

mode to the m* mode.

. Evaluation of the reflected field at the waveguide mouth due to the n'* mode
(Figure 3.2(e). This can be expressed by R, (8)e™*~* where R, (8) is the

reflection coefficient of the nt* mode to the m** mode.

5. Evaluation of the radiated field attributed to the m** mode incident at the

waveguide mouth (Figure 3.2(f). This field can be expressed as
F' (s /P (cos ; §) e~ TkePeos(0=8) 4 (3.7)

where P, (cosa, §) is proportional to the spectrum of the currents induced on

the half plane due to the incident m** mode.
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Accordingly, the scattered field by the recessed stub geometry in Figure 3.2(a) is

given by (for y > &)

Fllo,0,,6.d) :/ (P4 (cos a, cos ¢,; 8)4Proq (cos a. cos 0,1 8. d)] e7Ikepcosla=2a) 4
; ‘ c
(3.8)
where P4 (cos a,cos ¢,: 8, d) is associated with the presence of the stub and includes

the contribution of the waveguide modal fields. It can be written in a matrix form

Proilcosa.coso,:8,.d) =

[P, (cosa;é 1T{fll Wonn (D)][Crn)[Wonn (d) HRmn ()]}

P

[Won (D)L mn] [Wonn (d)][C (cOS b3 8)] (3.9) .

in which the brackets signify column or square matrices depending on whether one
or two subscripts appear, respectively. In addition, [I] denotes the identity matrix

and [W,, (d)] is the modal propagation matrix whose elements are given by

e~ind  m=n
Wi (d) = { (3.10)
0, m # n.

To obtain the field scattered by the recessed material slab it is only required to set d
and & to 0 in (3.8) and (3.9). In this case, [Wp, (d = 0)] becomes the identity matrix
and [[',] reduces to [I} or —[/] for H, and E, polarizations, respectively. Thus,

P...; becomes

Prod (cos a, cos ¢,) =2 Prod (cosa, cos ¢o;6 = 0,d = 0)

= [Pn(cosa)]{[I] - V1 [Rmn)} [(11Ch (cos @,)] (3.11)

where

P (cosa) f P (cosa; 6 =0)
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C, (coso,) e/ Cr(cos 0,6 =0)
Ron 2 Ran(6=0). (3.12)

Hence. the field scattered by the vertically inhomogeneous recessed slab can be ex-

pressed as
F*(5.0,) =/ P., (cos a.cos 6,) e~ 5P 03(@=2) o - 4y 5 (3.13)
C

where

Py (cosa.cos d,) = Pyy(cosa.cos ¢,) + Proilcosa.coso,). (3.1H

The steepest descent method can then be employed to evaluate (3.13) and obtain

the diffracted field.

3.2 Plane Wave Diffraction and Mode Coupling

Consider the plane wave

F; — ejko(rcos¢o+ysinoo) (315)

F! = v sing,eltolzcosootysinoc] (3.16)

incident at an angle ¢, upon the structure depicted in Figure 3.2(b). In the absence

of the perfectly conducting half-plane, the total fields may be written as (for y > 0)

with
F: _ R(COS ¢0) ejko(rcos(bo—ySinéo) (3.19)

FI = —u1R(cos o,) sin opel*elzcosomysines) (3.20)
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where R (cos¢,) denotes the plane wave reflection coefficient of the grounded slab
referred to y = 0. For the general case of a plane wave incident at an angle a on a

vertically inhomogeneous ground plane coating, R(A = cos @) may be represented as

R = — AN = VI=XNB () 31,
A+ VioaB( ]

where A (A) and B (A) are even functions of A, with any branch cuts in A () also

appearing in B (\) and vice versa.
The introdnction of the perfectly conducting half plane at y = § gencrat. s an

additional scattered field component F? so that the total fields become

F. = FPr4F? (3.22)

F, FP 4+ F? (3.23)

This scattered field is due to induced currents on the perfectly conducting half-plane.
and can thus be represented by an angular spectrum of plane waves. A suitable

representation is [10]

Jo P (cos o) elkodsinag—jkopcos (6—a) j, y >0,
F? = ¢ JoQ(cosa) emskotsina [g=skopcos(9+o) (3.24)
+R(cos (7 — a)) e‘jkopms(‘”""‘)] da 0<y<$,
implving
— Jcvisina P (cos a) e?kedsinag—skopcos (6-a) 4, y > 46,
F: =< Jovisina @ (cos a) eikosina [e‘jk""m (6+a) (3.25)

—R(cos (m — a)) emtkerces(9=0) oy 0 < y < 6,
m which P (cos a) and @ (cos a) are the unknown spectral functions to be determined
p

from the boundary conditions at y = 0. These are



{Bli Continuity of the tangential electric fields at y = 8. —xx < r < x
(B2) Continuity of the tangential magnetic flelds at y =48, < 0
(B3} Vanishing tangential electric field on the perfectly conducting half-

planeat y =&, ¢ >0

and we note that the boundary condition at the slab surface 1s implicitly taken into
account by the representation (3.24) and (3.25).
The application of (B1)-(B3) in conjunction with (3.24) and (3.23) is straight-

forward. It results in the set of equations

A = —1v1Q (N {1 — v R(\) e‘ﬂ"°5m] : (3.26)
/ Q _Jko.r,\d/\ =0 L r< 0’ (3‘2‘_)
/ Q(A {1 — v R(\) —2jk06\/1—,.\§} e-IkeTA g\ —

— s (,/\D) / \2 e]k 5\/1— [1 _ le —2)/&05\/ ,23 Jkol‘—\o T > 0(3 .BS

where we have set A = cosa, A, = cos ¢, and

1, E. polarization,

vy (A) { (3.29)
1/v/1-=A% H, polarization.
1/v/1—-A%, E, polarization,

v3(A) = (3.30)
1, H, polarization.

These are sufficient to obtain a solution for @ (A) and P (). However, before pro-
ceeding, it is necessary to rewrite certain terms in the integrands of (3.27) and (3.23)
as products of “upper” and “lower” functions, that is, functions free of poles, zeros,
and branch cuts in the upper and lower half ) planes, respectively. In the process of

doing so. we introduce the definitions



e () wr ey (3.32)

- 2 e L7 (/\.6)L (/\(S)
1 — \ 27kod/1-A de f w L 333
llR( }e L’(\)Ca(,\) 3.33

in which

Lo(Nid) U (Mi8) = A(N) (14 v e WesVIT)
FVI=A2B () (1 — vy e 258/T) (3.34)
LU (A=A +VISXB()). (3.35)

In these. L, (), L, (A;6), v7 (M), v5 (A) are lower functions while Us (AN) .Uy (A 8).
v7 (). v7 (A) denote upper functions. We also note that LU, is a function charac-
teristic to the loaded parallel plate waveguide and its zeros correspond to modes in .
the waveguide. On the other hand, L,U, is a function characteristic to the grounded
slab with its zeros corresponding to the surface wave modes supported by the slab.

Substituting (3.31)-(3.35) into (3.27) and (3.28), we have

[ Qe (s et =0 5 2 <, (3.36)
Lu(A8)Uu(M8) _pn
[ en 5 ) e =
—vF (M) v3 (Ao) /1 — 12 eikefV I8 2L ’\E’; 5;5 ((’\°)’ 5)eﬂ‘°“0; z > 0(3.37)

These coupled dual integral equations can be solved for the unknown spectra by
examining the analytic properties of the integrands, and the reader is referred to [10]
and (53] for a more explicit description of this process. From (3.36) and (3.37) the

unknown spectra are determined to be

Q(\) — Lw(/\oa6) Us(/\) V ejko(s 1—,\% (3 38)
, 2’7wa(/\;6) Ls(Ao) (’\) v3 (/\)(’\+ .
P(,\) _ —-L’l[/w (/\,5) Lw ()\ 6) V B 6]‘1:08\/1—,\5. (339)

2myLs (A) Ly(A,) vy ()\) v3 ( )(/\ '
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Recognizing that P, (A) = P(\). we may then set § = 0 and substitute for the

polarization dependent functions to obtain

P \) _ L’L'(/\)Lw(/\o) \ 1 _’\V L _’\7 (’3 40)
dd | T 23 L, (M) LX) (A+ AL) o

PN = — Lo(MLy(N) VI+ AW+, (3.41)
4 2r5L (M) Ly (A) (A+A,)

where the superscripts e and h refer to the spectra associated with E, and H. po-
larizations, respectively.

To solve for the field coupled into the regic.. 0 < y < é, z > 0, (3.21), (3.33) and
(3.38) are substituted into (3.24) to obtain the integral expression

o= T )07 DD IZAE L, (8) YT
: —se 2705 (M el (A (A + A, Ls(\o)Ls(\)Lw(/\,é)

{ A sm( yv1-— /\2>
' ;)J. a
VI- A2

+2B(’ cos( oYV 1 — \2)] e TIFTNIN(3.42)

for 0 < y < &. This can be evaluated by closing the path of integration via a semi-
infinite contour in the lower half A\ plane. The sum of the residues of the captured

poles then vields

Al _ sin {koyy/1 — A2) ’
F: = Z Cn (’\o) {JA (’\n) (\/1 — ’\?21 + B (/\n) COSs (koywl — /\721) } e—Jk"I'\"

where {\,} are the zeros of U, (};6),

(3.43)

Cr(\,) = —2 k818120 Ly (Ao 6) vF (Ao) vs (Xo) /1 =22
S Lo Lo (00 UL i 8) 57 () 03 () (o 5 )
(3.44)

and
dU,,

UL (i) = —22)

(3.43)

Substituting (3.29) and (3.30) into (3.44) with § = 0, we obtain the more explicit



forms for C.(\,) as

- wr e} 1—/\) —,\\n
CE(A,) = — 2L (X) v V1 (3.46)
Ly(Ay) L, ( )[ \.) A, + A,
, 2L, (A, 1+ A, /T+7X, o
CrHOAL) = — Bl VIFAY (3.47)

Ls(/\n)-l:s(/\o)[jxlu(’\n) /\o+'\n

for £. and H. polarizations, respectively.

3.3 Reflection and Launching of a Waveguide Mode

Consider now then ntt waveguide mode field (for 0 < y < §)

sin { k,y 1-A2

F., :[J’A (As) o + B (A,) cos (koy\/l_— \SL)J g7kt n

Fen=[r14(A,) cos (koyy/1 = A2) 401 B (A h/T = AZsin (koyy/1 = A2 ) erkorin

(3.48) .
incident at the waveguide opening (Figure 3.2(e)). The radiated fields due to this
excitation may be again represented by (3.24) - (3.25). Subsequent application of
the boundary conditions (B1)-(B3) then yvields the dual integral equations (with the

usual transformation to the A plane)

L,(X:8)U, (A 6) kara
,\ IFoT = : 3.
/ Q (A ) DA dAX=0 ; z>90 (3.49)
—v4eﬂ°°”\" ;
Q(A) vf (A)vg (M) e=komrygy = ;r <0, (3.50)
/ : 2 cos (koé\/l - E)
where
A(X,) L E, polarization
B(A.) , H, polarization.

The solution of those proceeds in a manner parallel to the previous case. The result-
ing spectra are determined to be
_U‘t[’w(/\n;é)l’rs (’\)UB_ (/\n) [ =
, 3.52)
477005 (kob\/1 = A2) L(A) U, (X1 6) 0 (M) o7 (A)of (A) (A + A
UIU4L (/\m 5)Lw (/\v 6) U.’.’.— ()‘n)
i7j cos (k,6,/1 - AL, s(An)Ls () w7 (Mvg () vf (A) (A + A

Q) =

P(\) = (3.53)
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[W1]

with L. L,, v%, etc. as defined in (3.34), (3.33) and (3.31), (3.32).

Substituting (3.4). (3.29). (3.30), (3.31) and (3.33) into {3.33) and setting & = 0

we have
pr A LM Lu(A) VIZAVI= X, i
. = - {3.9
" S WLV, A+, /
Lo(M Ly VI+AVT+ A, .
P"(\) = B(\) (M) L (Ar) + (3.55)

4TFjL3 (’\>Ls(’\n) A+ /\n
correspondin: to the spectra for the £, and M, polarizations, respectively. The
g (3.521.

niwdal field reflected back into the guide may be computed by substituting

(3.21) and {3.33) into (3.24) and employing the usual transformation to the A plane

to obtain (for 0 <y < ¢)

F" _ /30 _U4v3—(/\n)
T e amscos (kaoyT = A2)vs (M vg () v (V) (A + An)
L, (A, 8) emka8V1A
Lo(M Ly (A) Un (X 6)
pid(y S0 (koyvT=27)
AW V1=22

As in the case of coupling, this integral can again be evaluated by closing the path

+ 2B (A)cos (koyvl - /\2)} e TIRTAIN3.56)

of integration in (3.56) via a semi-infinite contour in the lower half A plane to obtain

N ' sin [ koyy/1 — AZ ) : L
Fl= 2 Bmn {JA(/\m) (\/1 myv) + B (Anm) cos (koy\/l - A;) } g™ IkoTm

m=1
(3.57)
where R.., are the mode reflection coefficients given by
R _ vavy (An) e7IRSVI-An
cos (koé\/l — A%)v; Am) vy (An)vd (Am) (Am + An)
L, (An;d i}
w ( ) . (3.58)
Ly (Am) Ly (An) Ul (Amid)
When ¢ is set to zero, this reduces to
e A (/\n) Lw (/\n) V 1 - /\m\/l - /\n. R
R 1350

\/l—-,\% LS(’\m)LS()‘n)UzL()‘m) Am + An
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oo

L, () V1+ A VT + A,
LaAm) LeOA) U (M) A+ A,

w

R', = B(\)

(3.60)

for the £, and I, polarizations, respectively.

3.4 Computation of Spectra for Material Insert in a Per-
fectly Conducting Ground Plane

We now have all the necessary components required for constructing the spectra
P, associated with e multilayer slab recessed in a ground plane as defined in

(3.14) Substituting (3.40), (3.46), (3.54), (3.59) and (3.11) into (3.14) we obtain the

[, polarization result

. LML, V1-2/1 - AR A VA N+ A,
PLAN) = — . Yy [
"’"JLS(/)LS(’\O) "\+/\O m=1n=1 OT\ /\‘T‘;\m .
(3.61)
where

~ A(A) Ly, (A) , N

€ - /\ - / ’c . . 2

bn = \/1_ N2 L, ) Ly () U3 (0 )\[ VL= AVEL (362)

Vin = {1+ [Rmnl} - (3.63)

For H, polarization, the spectra may be obtained by substituting (3.41), (3.47),
(3.33). (3.60) and (3.11) into (3.14) to find

V/ . N N
PR (A A,) = =Ly (A) Ly (X)) VI+AVI+ A, 14 EZ vh (,\+,\O>}

275L, (A) L, (No) A+ A, SV U
(3.64)
where
N Lo(An) i
V';L‘n=B(Am) WY 2/\ \/1+A V1+ 2,12 (3.65)
re =[] = [Rmn]};n - (3.66)

Expressions (3.61) and (3.64) can now be substituted into (3.13) and the resulting

integral can be evaluated by the method of steepest descents to vield the fiur o



non-uniform diffracted field

‘ ‘_7— " e Jkop o
F?{coso.coso,) ~ \/' TP (cos 0. cos 0,) \ (3.671

ko N
where (p. o.) denote the usual cylindrical coordinates. In (3.67), F* and P,, refer
to £ and P¢, in the case of E. incidence and to Z,H?, P! for H. polarization.
Although not apparent, (3.67) is reciprocal with respect to cos¢ and cos ¢,. as it
should. We also note that P,; (A, \.) is a combination of an inhomogeneous solution
(direct diffracted term) and a sum of homogeneous solutions (modal contribution).
[t mayv also be easily shown from the asymptotic behavior of (3.61) and (3.64) that

the homogeneous terms do not affect the edge condition.

3.5 Specialization to the GIBC Representation

To obtain numerical results, we must first provide expressions for the multilayered
grounded slab reflection coefficient (i.e. A(A) and B(A)), as well as the associated
split functions and corresponding complex roots (waveguide modes). To accomplish
these tasks in a simple manner, we consider the general GIBC approximation to

R (\). This amounts to setting

AN = %An(l—/\z)n
n=0

B(\) = %Bn@—/\?)", (3.68)
n=0

where A, and B, are constants specific to the multilayered slab and are given in

chapter two. Introducing (3.68) into (3.21) yields

R(\) =

TNA AL (1= A = VI-XTENE B, ( 1-/\2)} (3.69)

SV A (1—A)"+VI-NEN8 B (1 - A2)"
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and note that for a given order of approximation. N4 and Ng are finite and in ceneral

Na= Ngor Ny = Npg+1, with the order of the condition equal to
Ns =maz (2N4,2Ng +1). (3.70)

To evaluate the split functions L, (A; 6) and U, (A;8), (3.68) is substituted into

(3.34) and by setting § = 0 we obtain

2V1-NTYE B (1 A" E, polarization
L, (MU, (\) = v (3.71)
2 VAN (L= A" H, polarization.

The split functions sre then trivially obtained as
( 2Bygv1— A I'[;?:_‘_’I {\/1 - &0 — ,\} E, polarization
i V2AN, H,?;‘l [\/1 - &, - /\] H, polarization,

(3.72)

Uy(N) = Ly (=))

where Im/1 — &, < 0 and {£,} are the V4 zeros of Z‘:_fo B, x" for E, polarization
or Ty A" for H, polarization. It is apparent from (3.44) and (3.72) that the
pertinent waveguide mode propagation constants are given by kov/T — &.,.

In a similar fashion, we may substitute (3.68) into (3.35) to obtain
Na 2n Ng 2n+1
Ly VU(N) = Y AV1I-A2 + > B,V1-A2
n=0 n=0
Ns n
- S s/iTE (3.73)

n=0
Ns —\2
- STl (1 LV j (3.74)
n=1 Tn
where
Ans2 n is even
50 = {
B(n-1y2 n is odd,
Ns S[ [ .
{7} = {zeros of the polynomial > 5 (=)'~} (3.73)
=0 ~0
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The factorization of (3.74) is again trivial upon making use of the well known splitting

germaine to the impedance half plane problem [34]. Noting that

Viee ¥ L= 3.76
L+ nvi=A Ky(An) - (Ain) (3.76)

we have.
Ng
1I=N) " VS
{s(\)st(—\)— <\u 7 ) - (37‘)
[Td Ko (A 1/ 7n)
where
N, (A7) Re(n) > 0
1\,*(,\:r]) = I_ (—,\;71) = [ ; - — -1 {3.73)
11” (,\—\/1—1/173]1\?(,\:17)} Re(n) < 0.
and
— V2sina/? §\D,(3ﬁ/9—a—9)\11,,(r/‘2—a+0)2
L, (cosa;n) = / \/;[ ] (3.79)

2

Ui (7/2) [1 + \/§cos (:/2-_0”)] [1 + V2 cos (3752;%9)}

In the above Re(n > 0), Im (\/1 —1/1%) €0,8 =sin"!(n),0 < Re(§), and ¥ is
the Maliuzhinets function [22], whose evaluation in algebraic form has been given
in {30]. Whereas the zeros of U, (\) represent the waveguide modes, the zeros of
L,(\) (which are the poles of i _) correspond to the surface waves supported by
the material laver. Although not required in this analysis, these are easily extracted
from (3.78) and (3.79).

The expressions (3.68) through (3.79) provide a complete description of a GIBC
implementation and permit the simulation of any multilayered coating. We remark
that a unique GIBC modeling of a given coating does not exist: in fact one may
employ GIBCs of substantially different character to simulate the same configura-
tion. This point is discussed in the following section and some numerical results are

provided for illustration purposes.



3.6 Numerical Results

In this section GIBC simulations of various material inserts are presented and
compared with exact results available for the case of a single layer. Due to its
greater interest. data is presented only for the H, polarization case. The GIBC
employed here-in are given in chapter two. These are valid for arbitrary multilayer
coatings and are therefore suited for this application. In particular, these multilaver
GIBC are synthesized by comining the component-layer GIBC in an appropriate
manner, pointing to the necessity of understandiny single layer simulations in order
to construct multilayer oneé.

Figure 3.3 shows the far zone pattern of a single layer insert (e=2—-,;0001l,u=
L.2.7 = .2)) modeled by various “low contrast” GIBC (i.e. those GIBC which
improve as the layer thickness or index of refraction decreases). To illustrate their
relative contributions to the far zone pattern, the direct diffraction and modal contri-
butions have been isolated in Figures 3.3(a) and 3.3(b), respectively, with the overall
result presented in Figure 3.3(c). We note that for this low contrast GIBC, an 8"
order simulation provides a reasonable approximation to the diffraction pattern.

In Figure 3.4, both the thickness and the index of refraction have been increased
in a low contrast simulation of a (single layer) material insert with e = 3.5 — 7.0001,
# =20, and 7 = 4). In contrast to the previous figure we now observe that a
20" order simulation is required to obtain a converged result. This degradation
with increasing index of refraction proves typical of low contrast simulations and
illustrates the need for other types of GIBC whose performance improves in this
range of material parameters.

In Figure 3.5 the same material insert corresponding to the data of Figure 3.4
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is simulated with high contrast GIBC (i.e., a GIBC which improves as the index of
refraction increases or as the laver thickness decreases). In contrast to the data in
Figure 3.4, we now observe that only a second order high contrast GIBC simulation is
required to accurately evaluate the far zone scattering. This difference in performance
between the low and high contrast GIBC stems from the type of approximation
emploved in their derivation and the reader is referred to chapter two for a more in
depth discussion. Some insight on the type of simulation provided by the low and
high contrast GIBC may be gained through an examination of the waveguide modes
predicted by the different simulations. These are presented in Tables 3.1 and 3.2 for
the single layer simulations corresponding to the data in Figure 3.4 and 3.5.

The exact modes given in the table are generated by the equation

-\ 2
v = Jep (”—) Cn=01,2,.... (3.80)

koT
We observe that as the order of the low contrast simulation is increased, the data in
Table 3.1 reveal that the waveguide modes are “picked up” in a sequential manner
corresponding to increasing n in (3.80). On the other hand (see Table 3.2), the
high contrast GIBCs pick up the n = 2 exact mode immediately and then “branch
off” to pick up the other modes. The discrepency in pattern convergence between
Figures 3.4 and 3.5 clearly suggests that the n = 2 mode is the most significant in
terms of diffraction (for this particular configuration). We explain this physically by
noting that the n = 2 mode may be resolved into its constituent rays which strike
the interface at a characteristic angle (say 67°) which is greater than the critical
angle ¢ of the material insert. On the other hand, the n = 0 and n = 1 modes are
associated with characteristic angles less than the critical angle. This implies that
upon coupling into the slab, the n = 2 waveguide mode is partially transmitted into

free space while the lower order waveguides modes remain bound.
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Exact Modes

L. C.(1,2,1)

L.C.(5,6,3)

L.C.(9,10,5)

L.C.(13,14,7)

L.C.(17,18,9)

L.C.(21,22,11)

2.6458 — ;0

2.6458 — j0

26458 — ;0

2.6458 — jO

2.6453 — J0

2.6458 — J0

26458 — J0

2.3318 — joO

23324 - j.1518

2.3303 — jO

2.3318 — jO

23318 — 0

2.3318 — O

0.8660 — 70.0001

—2.3324 — 71517

1.7608 — 7.0001

1.1583 — j.0001

0.8782 — j.0001

0.86612 — 7.0001

0 - j2.6575

2.3156 — j.1518

1.5228 — j1.4058

0.8198 — j1.9935

0.3937 — j2.6289

0 — j4.2464

—92.3156 — j.1517

~1.5227 — j1.4058

~0.8197 — ;1.9934

~0.3936 — j2.6289

0 - j5.6624

3.0782 — j2.1345

2.2444 — j2.6318

1.6576 — 73.1906

0 - j7.0178

—3.0782 — j2.1344

—2.2444 — j2.6318

~1.6576 — 73.1906

0 — j8.3404

4.1090 — j2.8858

3.1642 — j3.5300

0 — 9.6437

~4.1090 — j2.8858

-3.1642 — 33.5300

0 — j10.9348

5.2491 — j3.5008

0— j12.2168

-5.2491 — ;3.5008

Table 3.1: Low contrast approximation to waveguide modes for a layer with €

3.5 — 7.0001,2 = 2.0, and 7 = 4. TFor each low contrast boundary
condition, the three numbers of the column headings indicate the order
of the approximation in thickness 7, the order of the resulting boundary
condition, and the total number of modes (see chapter two).




Exact Modes

H. C.(0,2,1)

H.C.(1,4,2)

H.C.(2,6,3)

H.C.(3,8,4)

H.C.(4,10,5)

2.6458 — ;0

7.9636 — 7.0032

3.2862 — .0001

2.3318 — 50

5.5825 — 7.0023

2.2571 — 5.0001

2.2813 — j0

2.2714 — 50

0.8660 — 70.0001

0.8667 — ;.0001

0.8649 — ;.0001

0.8660 — 3.0001

0.8660 — 7.0001

0.8660 — 5.0001

0 — j2.6575

0 — 52.1309

0 — j2.0694

0.6002 — 72.2920

0 — j4.2464

—0.6002 — §2.2920

Table 3.2: High contrast approximation to waveguide modes for a layer with ¢ = 3.5—
7.0001, # = 2.0, and 7 = .4A. For each high contrast boundary condition,
the three numbers of the column headings indicate the approximation in
the index of refraction x~!, the order of the resulting boundary condition,

and the total number of modes.
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The above hypothesis may be tested by computing exact solutions in which the
selection of the included waveguide modes parallels the order in which they are
picked up depending on whether a low or high contrast GIBC simulation is emploved.
Figure 3.0 depicts a high contrast simulation of a single layer having ¢ = 11 —
J.0001, 4 = 7, and 7 = .4A. The 10-mode result is a pattern obtained by adding in
modes sequentially as determined from (3.30), thus paralleling a low contrast mode
selection scherie. On the other hand, the single mode result contains the contribution
~f only the n = 7 mode (the mode with 8™ > 6°¢), thus, paralleling the high contrast
mode selection criteria. This clearly verifies that the most significant waveguide
modes are those that are “visible”, i.e. those with §™ > 8°.

Finally, Figure 3.7 provides a simulation of a three layer insert composed of two -
L.zh contrast layers (¢ = 11—;.0001, x = 7, and 7 = .4A and € = 3.5—7.0001, 4 = 2.0,
and 7 = .4\) placed beneath a low contrast layer with e = 2 — ;.0001,x = 1.2 and
7 = .2). These are precisely the layers considered earlier in isolation. One might.
therefore, expect that the order of a GIBC which provided a converged result for
the single layer simulation will also provide an equally acceptable simulation when
the slab is part of a multilayer stack. For the case at hand this is indeed true, as
evidenced by the converged 9" order result. We also remark that the presence of
the two high contrast layers enhances the modal contribution to the total diffraction

when compared with the single layer data given in Figures 3.3(b) and 3.3(c).
3.7 Summary

In summary, the scattering from a vertically inhomogeneous slab recessed in a
ground plane was obtained through application of the generalized scattering matrix

technique in conjunction with the dual integral equation approach. The solution was
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specialized to the case of a multilayered slab simulated with a generalized impedance
boundary condition (GIBC). Results were given for various single layer inserts and
1t was seen that in the case of materials having sufficiently high index of refraction.
high contrast GIBC simulations converged more rapidly (with respect to the order
of the GIBC') and performed better than low contrast simulations. Finally, results
were presented for a 11 thick lossless three-layer insert containing both high and low
contrast layers. It was shown that the simulation converged at the point predicted
by the individual layer simulatior ., suggesting a method for constructing rmultilaver

simulations.



CHAPTER IV

GENERAL SOLUTION OF THE
DIFFRACTION BY A MATERIAL
DISCONTINUITY IN A THICK
DIELECTRIC/FETRRITE SLAB

In this chapter and the following one it is demonstrated that a GIBC/GSTC )
sheet characterization can vield a unique solution when supplemented with certain
conditions at the sheet discontinuity which do not require an apriori knowledge of
the edge fields. As a vehicle for presenting this solution procedure we employ the
dual integral equation method to consider the plane wave diffraction by a discon-
tinuous distributed sheet (see Figure 4.1(b)). This very general model is capable of
representing material half-planes, material junctions, and material discontinuities on
grounded structures, such as those shown in Figure 4.2. In addition, a distributed
sheet model typically renders the same degree of accuracy as the usual infinitely-thin
sheet. but with a lower order condition. It is, therefore, of much practical interest.

In the first section of the chapter, the GSTC representation of the distributed
sheet discontinuity is used to develop dual integral equations in terms of the un-
known spectral functions proportional to the sheet currents. These equations are
then solved in the standard manner to yield expressions for the spectral functions in

terms of unknown constants. The constants are dependent on the material and geo-

73
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Figure 4.1: (a) Distributed sheet. (b) Distributed sheet discontinuity.
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metrical properties of the discontinuity and their specific value is identified here for
several discontinuities by comparison with a few known diffraction solutions. This
demonstrates the validity of the presented solution. but in general, the determination
of the constants requires the enforcement of additional constraints demanding field
continuity accross the layer discontinuity. The development of these conditions and

their use in solving for the constants are presented in chapter five.

4.1 Dual Integral Equation Formulation

Consider a distributed sheet of thickness 7 illuminated by the plane wave
E. ine, E, polarization,
Fin* — ejk(xcosoo+ysin¢o) — (41)
ZoH;ine, H, polarization,
as shown in Figure 4.1(a). The excitation (4.1) induces reflected and transmitted
fields which are explicitly given by the properties of the distributed sheet. If this

sheet models a symmetric slab, then an appropriate GSTC representation is formallv

given by (see chapter 2)

Y O G o F S| B

k
(4.2)
() b b () (- 0 e
(4.3)

in which F'is the total field, F* = F (z,y = +7/2), §z2F* = G%F(:L',y = #+7/2), and
OyF=* = %F(w,y) ly=4r/2. Also, U (—%2-) are differential operators which operate
on the field quantity in the curly brackets, and are finite polynomials in —%€—2 whose
coefficients depend on the slab modeled by the distributed sheet. To maintain the

generality of the solution, the U} operators are left in symbolic form and the reader

is referred to chapter two for their explicit representation in terms of the material



constants and thickness of the lavers comprising the modeled slab. In general. the
order of {{;, (i.e. the highest derivative present) is usuallv the same or one more than
that of {12 and similarly the order of I{;; is the same or one more than the order of

{{... Thus. we may define the orders of the GSTCs in (4.3) to be

.\"f’“ = ma_\'imum{ order of Lllll (,\2) .1 + order of 51112 <,\2>}
e = maximum{ order of 21211 ()\2) .1 + order of 2/1212 (,\2)}

(4.4)

The reflected and transmitted fields may now be easily determined by employving

(4.3) to find

Frefl — Rlejk(z:cosrbo—ysinféo) (-15)

thn — Tlejk(rcos¢0+ysinoo) (46?

in which Ry and 7} are the reflection and transmission coefficients, respectively, and

are given as

ejkf sin @0 even o ~
Ry = ——— [Re=n + Re™) (4.7)

ejk'r sin %o even odd o
T, = —5— [Rye — Rg™]. (4.8)

with
Reven sin @ UL, (cos? ¢,) — U3, (cos? @) (4.9)
Y singudy; (cos? ¢,) + Uiy (cos? ¢,) '
podd sin &, Uy, (cos? ¢,) — UF, (cos? éo)' (4.10)
! sin @, (cos? ¢,) + UY, (cos? ¢,)

We remark that in (4.9) and (4.10), U} (cos? ¢,) now represent simple polynomial
functions in cos®¢,, since —dz?/k? = cos? @, in view of the field expressions 4.5

and (4.6).
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Consider now the case where the right half of the distributed sheet in Figure 4.1(a)
is replaced by another sheet of the same thickness. but of different properties. as

illustrated in Figure 4.1(b). The GSTC representation of this modified sheet s
7 (—il> {Ft-F-}+ %u;z (—%—) {oy [Fr+F]} = o0
723 (-%—) {Fr+F}+ %L{;? (—a—;;) {oy [F* - F7]}
for —x < z < 0 and

Uz, ("aiz) (Fr—F)+ %Ufz (_a—kx;) {ow[rr+r]} =0

]
K

i, (-5 ) (£ 4 P} + dus (_%_) {oy [F* - F])

0. (41D

]
o
—
-
—
o
—

for 0 < r < >, where the superscripts 1 and 2 distinguish the left- and right-hand -
sheets, respectively. Referring to our previous discussion, the orders of the right hand

side GSTCs are given as

Npdd = ma.\:{ order of U2, (/\2) in A,1 4+ order of U2, ()\2) in /\}

N5 = max { order of 4% (A?) in A,1 4 order of U2, () in A}, (4.13)

The modified right hand side sheet induces a scattered field F, in the presence of

the excitation (4.1), and the total field can now be represented as

Fict Frepi+ F, y>1/2

F= (4.14)
Ftran+F., y<T/2

where F is the unknown scattered field in the region |y| > 7/2 and can be expressed

as either [10] [52]

vl

F(z,y) =/ [—J—Podd(cosa) +Pevm(cosa)J gmIksinallyl=1/2g=skzcosag, (415,
cly
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Figure 4.3: (a) Illustration of C contour in the complex a plane and (b) complex A
plane.



or
. = 1yl vl A
Feir. y) = / {Mpodd (/\) + Pon (/\) eIk 1—‘\‘(]}/]_7'/2)6"11612\%. (4.16)
—-20 Yy VAR

upon invoking the transformation A = cosa. The contour C'in (4.13) is the inte-
gration path in the complex o plane shown in Figure 4.3(a), and its counterpart for
the A plane is illustrated in Figure 4.3(b). Also, the spectral functions P.i1(A) and
P, ien () are directly related to the Fourier transforms of the unknown equivalent

currents

Jodd = F3+—-F; (4.17)
Jeven = F,++F3—- (418)
via the relations
dA ,
Jodd(l') = / Podd(/\ € ]kx\\/lT\—Q (419)
, d\
Toen () = 2 [~ Pan (e o, (+.20)
Assuming that
Joad(z) ~ z*% asz — 0
Jeven(Z) ~ z**"asz — 0 (4.21)

with 0 < $54¢ <1 and 0 < S.pen < 1, from (4.19) - (4.20) and the Abelian theorem
we have

Podd()‘) ~ AT%dd ag ‘/\| — o

Peven (A) ~ A7%n a5 |A| - 0 (4.22)

From the asymptotic behavior of Py () and Pay, (1)), it may be easily seen that

the integral representation (4.16) is well-behaved and convergent for all z and y.
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Substituting (4.1), (4.3), (4.6), (4.14) and (4.16) into the transition conditions (+4.11)

and (4.12) we obtain

- )\
/_ Gyt (A7) Poaa (A e Tk T 0 (3.23)
/ gleven (/\2) Peuen(’\)e—]kr‘\ =0 = (. (424\

for x < 0 and

P k i
2sind, el kT Ao gl kT 2sine0 7 (\2)

ffc lea‘;d /\Q)Podd /\)e—jkr,\ d\
2

< VAEST Goed(A2)
. in ¢ kzAo o1kT [28ind0 7 /\2)
X ; 2 —7kT A d\ — QSlnof?eJ ce cvenl N5 ) P N
f—m 2g§Len (,\ ) Peren (/\) e ~IRT T = G (426)

for r > 0. where \, = cos ¢, and

Zoaa (N) = [0l (N3, (A2) =ty (0) 1 (2))] (431)
Zeven ’\3) = [Z’{?ll </\2> Z/{222 (’\3) - z/(21‘2 (AZ> Z’{'221 ()‘g)] . (432)

Note that strictly speaking, the integrals in (2.26)-(2.31) are not convergent because
of the polynomial order of the integrands. This difficulty is common in analytical
GIBC solutions and may be remedied by working with integrated field quantities
as discussed in [39] and [44]. It has been shown, though, that the final solution is
the same regardless of this remedy and for the sake of simplicity we will proceed
with the solution of the dual integral equations as if all Fourier inverse and forward
transforms existed in the classical sense.

E. iations (4.23) with (4.25) and (4.24) with (4.26) form two uncoupled sets of

integral equations which are sufficient to yield a solution for the unknown spectra
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Poeq(A) and P.,., (A). Clearly, because of the similarity between the two sets of
equations. once a solution for P, (\) is found, the corresponding one for P.,., (\)

follows by inspection.
4.2 Solution of the Dual Integral Equations

[n proceeding with the solution of P,y (A) we first rewrite (4.25) in a more suitable

manner, viz.

e Modd (2 ‘oA oJKkT/2sin¢o 2
Y5 (,\ )Podd (/\) sin @,e’ Zodd(’\o) —jkz\ — o
/_x{ S 27 () (A + Ao) J°© =0 433
for £ > 0. Closing now the integration paths in (4.23) and (4.33) by semi-infinite

contours in the upper- and lower-half A planes, respectively, leads to the deduction

that

=U,(\) (4.34)

\ 7

sin Cboejk‘r/z sin éoZodd (’\Z) Eodd (’\)
X 255G 0 (N Ay) Eoma(—Ao)

=L,(\) (4.35)

where U, (A) and L, (\) are unknown functions regular in the upper- or lower-half
of the A plane. Also, E,44 ()) is an unknown entire function to be determined along
with Py (A), U, (A) and L,(A). To solve for these, it is necessary to exploit the
analyticity properties of (4.34) and (4.35) in the different regions of the complex A
plane. An important part of this process is the factorization of the G functions in
(4.34) and (4.33) into a product of upper and lower functions (that is, functions free
of poles, zeros, and branch cuts in the upper- or lower-half A plane, respectively).

This task is described in the appendix. We have

O = GG

per (A7) = g ngEm ()
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;dd (/\2) — godd(/ ) ;id(/\)
;Lcn (1\2)

where the superscipts + denote upper or lower functions, respectively. Combining

gPLCTL ( gew’n ( \) (4.3()‘,

(4.34) with (4.33) in conjunction with (4.36) and rearranging terms we obtain

GS (MU, (N) SNG(N)  L,(V\)Git(\) 437
G AT AGED) T GF (Y 3
where
: . ojkT/2sin ¢, 2
5(/\) - Sin Ooe Zodd()‘o) Eodd(/\) (438)

2mjG7ed (A2) Eoa (=X5)
The second term of (4.37) may be easily split into a sum of upper and lower functions.

and when this is done, (4.37) can be rewritten as

g;id(’\)Lrg(\) S(/\) fid(,\o) _ Lo(\) 1odd(\)
gfid(’\) ()\‘{")\ )QOdd( o) - gd_a(l\)

S [ () Gl .
TV 163N G0, (+:39)

The left hand side of (4.39) is now regular in the upper half of the A plane while its
right hand side is regular in the lower half of the A plane. By Liouville's theorem, both
sides must then be equal to a polynomial, and to determine the order of this poly-
nomial it is necessary to examine the asymptotic behavior of the individual terms in
(4.39). From (4.4) and (4.13) G234 () ~ ANZ/2 Godd ()) ~ AN?PY/2 implying that the
left hand side of (4.39) behaves as |A[(N?**+7N7%)/2=1=%0aa when |A\| — oo, provided that
E.44(\) behaves no worse than |A|(NoastNoaa)/2=%0d¢ a5 |\| = oc. The right hand side
of (4.39) will then behave as the greater of [A|M™*~1=%cad and |\|(MT*+N3*)/2=1-s0aa
when |A] — oo. In accordance with Liouville’s theorem, both sides of (4.39) will
Nodd 4 Nodd

then be equal to a polynomial of order int {—L—z—z— -1- sodd}. In terms of this

unknown polynomial. we may solve first for U, (A) and subsequently for P,qs{\) to
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find that
1 J sino,v1—A2 €/kT/2sind,
PolA) = 3= odd 2dd 2dd | i
A+, GG () GIE N G ()
: E,i(\) | Vet Nosstom |
Zodd /\Z -, - Amn /\'*"Ao)m /\/\o)n 440)
( ) Eodd(_"\o) m=1 n[v_——_;) ( ( (

In this, Vogg = int {1/2(N); + N2, + 1)}, and a,,, are arbitrary constants as vet

undetermined. and correspond to the coefficients of the polynomial resulting from
the application of Liouville's theorem. The chosen symmetric form of this polynomial
15 not unique but will be found most useful later in constructing a reciprocal form

for Podd (/\ )

Following a similar procedure we also obtain P,,., (A) as

P (y) = JSnoIZW et 1ins:
even {7 - -2’,:. /\ + /\o geven ()\) ”ez,en( )geuen( )geuen ) o)

) E"Le’l (/\) ebcn"l ‘Nevcn"l -m

—ewen V7 ban (A 4+ A)™ (AN (4.41)
Eeuen(_/\o) z=: ,;

Zeyen (A2

2}

with Eepen (A), .Teuen and b, being the counterparts of E 4 (1)), N:Odd and a,,,.
respectively. We note that (4.40) and (4.41) imply that the powers S,qq4 and S.yen
governing the behavior of the equivalent currents J,44(z) and Jeven(T), respectively,

are given as

1 N+ NZ%, is even

Sodd = { (4.42)
1/2 Nly+ NZ%,is odd
1 Nlen + N2 is even

Seven = { (“1’43)
1/2 NL..+ NZ2_ isodd

even even

To determine the unknown entire functions Eoqq (X)) and Eepen (A), we observe

that the spectra Pogq () and P,y (\) must exhibit a reciprocal form, which may be
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achieved by setting E 44 (A) and Eepen (A) equal to any of the following functions:

Zodd (—/\,\O) or

Eoqa(A) = $ Z,(A) or (1.44)
L Z 5 (D)
( Zeven (—AN,) or

Eeven(N) = < 25, (N) or (4.43)

~ Z:;en (’\)

where ZJ); sven (M) and Z3;4 ,pen (A) are upper and lower functions satisfying the re-

lation
Zodd,even (/\2) = Z::id,euen (/\) ;id,even (/\) (446>

Taking into account the choices (4.44) and (4.45), we may substitute (4.40) and
(4.41) into (4.13) and subsequently perform a steepest descent path evaluation to -

obtain for p — oo (all surface wave contributions are neglected in this evaluation)

-jkp
F(p.6) ~ [Doad (6, 60) + Deven (¢, 60)] 7;—— (4.47)
kp/2x

where (p, ¢) are the usual cylindrical coordinates and D,q4 (@, @5) + Deven (@ @5) is
the far zone diffraction coefficient symmetric with respect to ¢ and ¢,. We have

e~I™/% sin ¢,sin ¢
27 cos ¢ + cos @,
ejkr/?(sin45°+]sin )]

G937 (cos ¢) G52 (cos ¢,) G339 (cos 9) G5 (cos 4,)

Doua (9, 0,)

ﬁodd—l ﬁodd_l"m
[Zodd (cos @, cos ¢,) + Z Z @nn (cOS ¢ +cos @,)™ (cos ¢ cos gbo)"jl (4.48)
m=1 n=0

e~/ sin ¢, sin ¢}
27 cos ¢ + cos ¢,
ejkr/?(sinq&.,-#—]sindal)

' £Uen (cos @) G (cos @,) G54 (cos @) G517 (cos &)

Deuen (QS, ¢o) =

A“\?even—l ﬁeven-l_m
Zeyen (cos 3,c08 @) + Y Y~ bmn (cos ¢ +cos ¢,)™ (cos ¢ cos ¢»o)"}
m=1 n=0

(4.49)
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in which the functions Zodd,cwn (cos ¢.cos @,) are given by (see (4.44) and (4.45))

Zogq (— cos ¢ cos ¢,) or

2544 (COs 9,c080,) = Zoyqlcos @) Z . (cos é,) or (4.50)

Z}(cos o) Z}, (cos ¢,)
Zeyen (— cos o cos ¢,) or

Zeven (CO80,C080,) = ( Z.,..(cos¢)Zz, (cosd,) or (4.51)

Zlen (c0s 8) ZF,,, (cos o)
Because the abovc three choices for Zodd and Zeven differ only by terms of the form
{cos m -+ cos 0,)™ (cos d cos @,)", it is immaterial which of them we choose, although
one of the choices may likely lead to a more compact representation. Nevertheless,
regardless of the choice of Zodd and Zevm, one is still faced with the determination of
the unknown constants a,,, and bmn in (4.48) and (4.49), respectively. These are a *
manifestation of the non-uniqueness of the finite-order GSTC sheet model employed
lierein, and their explicit determination requires the introduction of additional con-
straints pertaining to the physics of the problem as discussed in chapter five. In some

cases, however, these constants can be determined by comparison with alternative

diffraction solutions, and this is considered next.

4.3 Discussion of the Solution and Some Applications

4.3.1 Diffraction by thin single layer discontinuous slabs

The diffraction coefficient given by (4.48) and (4.49) is very general and can
model a wide variety of geometries. To check its validity, display its versatility, and
assess the relative importance of the unknown constants, we consider several simple
configurations which can be modelled with the proposed GSTCs. Their geometries
are shown in Figures 4.4(a)-4.4(c) and include the single layer join, the material-metal

join. and the material half plane. all of thickness 2w. Herewith, these are modeled



87

<
4
<
»

¢

<
TATAIA

v

<

¥

;
ke
<
¢
»

<

TTaTaT
X3

STOTHe,

£, 1

e

| #%ole%0%e 0%

L
L Y
¥
2w ¥
T
¥
2w
¥

Material-material junction. (b) Material-metallic join. (c) Material half-

Figure 4.4: Thin slab structures and their distributed sheet representation (a)
plane. (d) Equivalent distributed sheet.
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by a distributed sheet discontinuity of thickness 2(w — w,) (see Figure 4.4(d)) and
although. in general, it is not necessary to employ a sheet thickness different from
that of the slab., this is useful here for comparison with previous results.

If the left hand side of the slab is assumed to be thin and having a low index of
refraction. it may be modeled by a low contrast GSTC sheet. Thus. an O(wh, wl)
approximation with terms of O{w,w) neglected is sufficient for the representation of

the operators or polvnomials U} In particular, we have

ul (—02 k) = i

Ul (022 k) = jk(uw - w,)

U (_a.2/02) — o (WEsr ) i(ﬂ_ ’> 2

Uzl( dx*/k ) ]k(—-m ws | + 7 o dz

Uy (-0 k%) = 1 (4.52)

where €; and p, are the relative permittivity and permeability of the left hand slab,
respectively, and

u1, F, polarization

€1 H, polarization

Also, when w, = w, these are simply the transition conditions derived first by We-
instein [59] and later by Senior and Volakis [39]. The corresponding polynomials to
be employed in (4.27) - (4.32) are given by

Uy (—cospcosd,) = 1

Uiz (—cosdcos g,) = jk(ujw — w,)

Uy, (— cos ¢ cos d.) = jk (wewl - ws) + 7k (E - w,) Cos ¢ cos ¢,

U, Uy

Uy, (—cospcosp,) = 1 (4.54)

Incorporating these into (4.48) and (4.49) and setting

Zo44(cos ¢, cos 9,) = Zodd (— cos ¢ cos ¢,) (4.

NS
it
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Zcum (cos &,c08 @,) = Zeyen (— cos dcosg,) (4.56)

vields

e—_)7r/4

sin &, sin @ (ikr/2(sin o+ sina1)
2% Ccos ¢+ cos ¢,
UL (— cos dcos ¢,) — jk (wyw — w,) UE (— cos dcos ¢,)
M- (cos 017741) M- (cos 0,1 1°%1) G122 (cos 0) G52 (cos 0,)

Doga(6.8,) = —

—-im/4 gin 6. si
€ sin @,| sin @/ 3T /2(sin do+|sina|)
27 COS @ + COS @,

Deuen (O, oo) - -

2, e (cos ®; *ff}fe"’l) M_ (cos bo; ‘75}1’8"'1)] Gsvem (cos @) G5 (cos ¢,)

8

_ [ + ag cos & cos b, UZ, (— cos cos ¢,) — UZ (— cos pcos b,)
a3

b1g (cos @ + cos &)
+ 2 ., even, 1\ . even,l even eyen
03[ LAY i (cos O;Ym )JI_ (cos o} Ym )} G54 (cos 0)G51™ (cos 0,)
(4.58)
where the split function M_ (cos ¢;+) is given in the appendix.
a, = ]k (l_Ui].'./-.t_l —_ w’)
Uy
ay = jk (ﬂ - w,)
U
Tkw .
az = L (e1p1 — 1) (4.59)
231
and
odd,1 _ _]

k(uw — w,)

even,1 Uy + \/’U,g + 4k?w (51#1 - 1) (w - ulws) 4 60)
Tz B 27k (w — wyuq) (4.

with ~°dd or even renresenting possible surface wave poles. To complete the definition
of (4.57) and (4.58), the functions associated with the right hand side properties of
the slab (i.e. those functions with the superscript 2) must be specified. Referring
to the configurations in Figure 4.4(a)-4.4(c), Table 4.1 and Table 4.2 provide ex-

plicit expressions for the functions U} (— cos ¢ cos ¢,), G234 (cos ¢) G534 (cos o, and



Geometry, z > 0 Uy (—cos gcos ¢,) | Uy (— cos dcos d,) | G334 (cos #) G2 (cos ¢,) yodd:2
Low Contrast O(w, w,) 1 7k (u2w — w,) M, (COS ; '7;’“'2) M, (COS ¢a;’7f“'2) Kaaw—w)
e Space L 1 =) |y (o) (1) | e
PEC(Ez-pol) or PMC(Hz-pol) | 1 0 1 -
PMC(Ez-pol) or PEC(Hz-pol) | 0 1 —

V1 —cos ¢/ —cos §,

Table 4.1: Odd symmetry parameters for distributed sheet similation of right hand
side material £ > 0. See Appendix 1 for definition of M, spht [unctions.
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Geometry, r > 0

u;l (— cos ¢ cos #o)s uzz'z(_ cos ¢ cos @)

G5y (cos ¢) G54 (cos ¢,)

Low Contrast, O(w, w,)

Up = sk (Mfzﬂ - w.) + jk cos ¢ cos ¢, (ﬁ - w,)

u =1

22 (capiz — 1) [1oy My (cos ¢y ?) My (cos 4o; vere™?)

m

with even,2 "71\/\2'0 ak?w(eur 1) (w—vaw,)
a2 . 2;k(w-w,uz)

Free Space Limit

UZ = jk(w - w,) (1 + cos ¢ cos §,)

uh =1

VT = cos /T = cos g, i1y (cos ¢ 77") My (cos 403 73""?)

with '7{"""2 = ——l—k(w_—w,)

PEC(Ez-pol) (b1o = 0) ui =1

or PMC(Hz-pol) (bo = 0) | U3, =0

1

PMC(Ez-pol) or
PEC(Hz-pol)

u; =0

Up =1

V1 = cos ¢y/1 — cos ¢,

Table 4.2: Even symmetry parameters for distributed sheet similation of right hand
side material £ > 0. See Appendix 1 for definition of M split functions.
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G (cos o) G35 (cos @,) terms. By edge condition considerations, all of the con-
stants am, and b,,, have been set to zero except by appearing in the definition of
Deyen. which is non-zero unless the right hand side slab is a PEC/PMC under an

E./H. excitation (see Table 4.2).

4.3.2 Diffraction by a resistive-resistive junction

When w = w,. and the material parameters of the slab geometries in Fig-

ures 4.4(a) and 4.4(c) take the limits

€12 — OC

K12 —

T — 0
. 1
Jhw(ep—1) — —
N2
} 1
Jhw(pz—1) —» — (4.61)
71,2

the resulting configuration corresponds to coincident resistive and conductive sheet
junctions [37], where M,z and 77, denote the resistivities and conductivities of the
respective sheets. In this case, the constant by, is forced to zero by the edge condition,

and (4.57) and (4.58) simplify to

D44 (cos ¢, cos $o) =
sin¢d(cos¢,cos¢o)(l/n§"-1/7){") (462)
M_ (cos ¢;1/n]*) M_ (cos o,; 1/n1*) My (cos ¢;1/n5) M, (cos Po; 1/'1';?‘76
Deyen (cos ¢,cos ¢,) =

lSil’l ¢, d(COS ¢.~ cos ¢0) (77‘5 — n;) (4 63)
M_ (cos ¢; 1/n$) M_ (cos ¢,; 1/n%) M, (cos & 1/n5) My (cos ¢,; /n)"

for E; polarization and

Dsaq(cos ¢, cos ¢,) =
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sin ¢ d (cos @, cos ¢,) (1/n5 — 1/n5)
M_(coso:1/nt) M_(coso,; 1/n5) M, (cos ¢, 1/ns) M, (cos o,:1/75)

(4.64)

DfL‘Sn(COS O, COS OO) =
Isinof d{coso.coso,) (nT —nT) L 65)
M_(coso;1/nT*) M_ (cos ¢o; 1/nT*) My (cos o; 1/nT) My (cos o,; 1/7;2"1)'

for H. polarization, where

‘ e=Im/4 sin @,
d(cos ¢,cos ¢,) = — T — (1.66)

Note that if both 7%, ¢ — co (i.e., the resistive sheets disappear), then
D,q4(cos ¢, cos @,) and Deyen (cOs @, cos @,) tend to zero for H. and E. polarizations,
respectively. On the other hand, if both 7%, n[* — oo (i.e., the conductive sheets
disappear),then D,y (cos ¢,cos ¢,) and D.yen (cos ¢, cos é,) tend to zero for E, and

H. polarizations, respectively. This is, of course, because resistive and conductive
sheets scatter independently of each other. Consequently, the field diffracted by a
resistive to conductive sheet junction is the superposition of the individual sheet

contributions [39].

4.3.3 Diffraction by grounded metal-dielectric junctions

Of the geometries shown in Figure 4.4, the diffracted field associated with the
metal-dielectric junction (Figure 4.4(b)) is given in chapter three and can therefore
be used to partially validate the derived solution. However, in order to study only
the effect of the constant b,9, we need to exclude the odd-symmetry portion of the
metal-dielectric join diffraction coefficient. To this end, we focus on the recessed slab
geometry of Figure 4.5(a), whose H, polarization diffraction coefficient is related

(through image theory) to that of the metal-dielectric join by

D, (cos ¢,c08 @,) = 2Deyen (COs ¢, cOs ¢,) 1.67)

——
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Figure 4.5: (a) Recessed slab (PEC stub) (b) Grounded slab with truncated upper
plate (c) Recessed slab (PMC stub) (d) GIBC sheet



with Deyen given by (4.58) along with the PEC(H.-pol.) entries of Table 4.2. As
noted above. for a right hand side PEC slab with E. polarization, the edge condition
demands b, = 0 in this case.

For the recessed slab geometry illuminated with an H, polarized plane wave, the

GSTC (+.11) and (4.12) become the GIBC

dz? J Oz?
1 —_— . Q
ut (<55 7} + o (-5 ) our ) =0 (469)
for —>x <z < 0 and
dz? J dz*?
2 2 +1 _ :
U (‘Tz > {F}+ TUi (‘F ) {oyF*} =0 (4.69)

for 0 < z < oo, with the U} operators given in (4.52). Clearly, these GIBC can
represent any of the configurations displayed in Figure 4.5(a)-(c) without regard to :
whether a stub (PEC or PMC) or not is placed at the junction. This information
can only be carried by the constant b9 as the term distinguishing the diffraction
coefficients among the geometries of Figure 4.5(a)-(c). Thus, the determination of
b, must somehow involve the properties of the junction across its thickness and
this is discussed in chapter five. However, since the solution of the configuration in
Figure 4.3(a)-(c) are already available in chapter three, bo can be identified for each
geometry by comparing (4.58) with the appropriate solutions given in chapter three.

Upon setting w, = 0, we find

pio stub = jkw l:_ll
pPec stub _ jkw\/g
10 =
B (v 1) o (™) . (V| 17
pPme stub _ jkw\/g
10 =

e (e — 1) (M (Ve 5) M- (Vamas ™) - 12

(4.70)
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corresponding to the constants associated with the diffraction coefficients for the
geometries in Figure 4.5(b), Figure 4.5(a), and Figure 4.5(c), respectively. We note
that these constants are based on the choice of chen (cos ¢, cos ¢,) as given in (+4.36).

Had this function been chosen as

~

Zeven (COS @, c088,) = Z_.... (cos @) Z . yen (cOs @) (4.71)

the resulting constants would have been

o stub _
by St

bpec stub _ —jkw /
jkw\/g

{i_v;u( 51,“1 ) (M_ (\/617 7euen 1) M. (\/m’ ‘_Yeven 1))2 + 1/2

ppeC stub _ _]-kw\/g
. jkw\/g 2
S (Vam = 1) (M- (Ve ) Mo (e, 43)) - 1/2

(4.72)

and the more compact representation of the no-stub diffraction coefficient is at once
evident.

To assess the importance of the constant b, with respect to Z,ven (cos ¢, cos @,)
as given in (4.56), we plotted in Figure 4.6 the backscatter echo width patterns
associated with the three configurations in Figure 4.5(a)-(c) and have compared these
patterns with that computed by setting ;0 = 0. The chosen relative constitutive
parameters for the left hand side slab are ¢ = 2 and p = 1.2, and the entire slab is
of thickness w = .04\ (where here A denotes the free space wavelength). We observe
that the backscatter patterns are, in general, substantially different, underscoring

the importance of the constant. Although 5°5°**™ is nearly zero in this case. it will



97

20.0
10.0 |
0.0 |
B e
o
£ -10.0
< :
o o
-20.0 | N
 No stub (b10=0-(.1947) \
~30.0 | PEC stub (b10=-0.0451+/0.0213) \
[ PMC stub (b10=0.6875+]0.3242) \
- Constant b10=0. _ _
_40.0 S S S | Lo 11 | & 1 | I | | TN ST T |

0.0 300 600 900 120.0 150.0 180.0
Angle in degrees

Go
¢

NANSESESNS NN ANNNNNNNNNNN PEC \
T=041, €=2-1.0001, L=1.2 N5} Nec

PMC
pec”

Figure 4.6: H, polarization backscatter echo width for a material insert having w =
04\, e =2 —7.0001, z = 1.2 modeled with O(w) low contrast GIBCs
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not be so when w becomes larger. For example, if w is increased to 0.1\, a 3" order
low contrast GIBC with terms up to O(w?) is required for an accurate simulation of
“the dielectric. In this case the constants byq, by, and by are non-zero and as shown
in Figure 47 they play a major role in providing the correct diffracted field by the

recessed slab of Figure 4.5(a).

4.3.4 Diffraction by a thin dielectic/ferrite half plane

Another configuration whose diffraction has been examined in the past is the thin
dielectric half plane shown in Figure 4.4(c). If a 2™ order GSTC with terms up to
O(w) i1s employed for the simulation of the layer, the resulting diffracted field is given
by (4.37) and (4.38) in conjunction with the “free space limit” entries in Table 4.1
and Table 4.2 for the right hand slab. The constant 4,5 must again be specified for a
complete determination of the diffraction coefficient. We remark, however, that if b9
is arbitrarily set to zero, then for w, = w the sum of (4.57) and (4.58) reduces to the
diffraction coefficient already derived in {54]. Similar assumptions about the value
of the constant have also been made in {32] and although this may be acceptable in
some cases (i.e. for extremely thin layers or layers of certain composition), it was
already demonstrated above that the constant(s) play an important role and must

be accurately determined. This is the subject of chapter five.

4.4 Conclusion

In conclusion, we have derived a general solution for the diffraction by a discon-
tinuous distributed sheet representing a multilayered slab discontinuity. The solution
can be specialized to a wide variety of material junctions and discontinuities by an

appropriate choice for the polynomial operators L{}j and U};. Unfortunatelv, un-
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known constants arise in the final solution due to the non-uniqueness of the finite
GSTC/GIBC sheet representations. In comparing the derived diffraction coefficient
to a previous result for the material half plane, it was shown that the single unknown
constant obtained herein was implicitly assumed zero in [54] and [32]. The impor-
tance of the constant was examined for the case of three grounded slab geometries
whose GIBC modeling differed only by the value of a single constant b,,. This com-
parison demonstrated that for very thin metal-dielectric junctions, the constant bio
was approximately zero, whereas for thicker junctions the constant(s) played a more

crucial role.



CHAPTER V

RESOLUTION OF NON-UNIQUENESS
ASSOCIATED WITH THE GIBC/GSTC
SOLUTION

In chapter four, a dual integral equation solution was presented for the diffrac-
tion by a multilayer material-to-material junction using a GSTC simulation of the
multilayer slab. As expected, the solution was in terms of unknown constants and it
was shown that these are dependent on the physical properties of the junction (see
Figure 5.1). Consequently, an approach for determining the solution constants is to
enforce tangential fleld continuity across the junction. This, of course, demands a
knowledge of the fields internal to the discontinuous slab, which, however, are not
readily available when a GSTC simulation is employed. The Weiner-Hopf solution
in conjunction with the GSTC provides only the field external to the slab, and the
majority of this chapter deals with the determination of the internal field from the
external one given in chapter four.

In the following section, a modal representation of the internal field is proposed
comprised of discrete and continuous spectral components. This representation is
compatible with that given by Shevchenko [45] whose eigenfunctions are chosen to
satisfy the continuity boundary conditions across all layer interfaces including the

air-dielectric interface. Consequently the representation is valid inside and outside
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Figure 5.1: Symmetric multilayer slab discontinuity illuminated by a plane wave

the dielectric once the coefficients of the modal representation are determined. This
1s accomplished by recasting the Weiner-Hopf or dual integral equation solution of
the same problem from chapter four in a form compatible with the proposed modal
representation, thus permitting the identification of the modal or eigenfunction co-
efficients. These are, of course, in terms of the unknown constants appearing in
the Weiner-Hopf solution and the enforcement of field continuity across the junction
leads to a linear system of equations to be solved for the constants. In the final
section of the paper, several scattering calculations are presented for a few material-
to-material junctions which demonstrate the importance of the constants and the

accuracy of the solution.
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Figure 5.2: Symmetric multilayer slab with irregular termination illuminated by a
polarized field excitation

5.1 Modal Decomposition for the Symmetric Slab Problem

Consider a symmetric slab of total thickness 7 with an irregular termination to
its left, as illustrated in Figure 5.2. The slab is herewith assumed to consist of L
homogeneous layers with the m** layer being of thickness 7., and having relative
permittivity and permeability ,, and g, respectively. When this truncated slab is

subjected to some polarized field excitation, the field to the right of the junction at
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the point z can be written as a sum of odd- and even-symmetry fields. That is
F(z,y) = F™(z,y) + F*" (z,y) (5.1)

where

E., E, polarization,
F = { (5.2)

Z,H,, H, polarization,
Fodd(p y) = —=F°% (2, —y) and Feven z,y) = F**" (z, —y). Following [45], the odd
(

and even fields everywhere interior and exterior to the slab may be decomposed into

discrete and continuous eigenmodes as

Nygo U
Fodd (;L',y) — Z ‘qf:d\podd ((/\gnc;)z’y) e-]’:x,\?n +Z B:’:qu);):d (y) e_fk'r'\?,i‘d

m=1 m=1
n /"30 Codd (3) \Dodd (/\2,y) e—jkr'\dﬁ (53)
0
Ngo \/evcn

Feven (I,y) — Z A;:/enlpcven ((/\3:)2’ ) —ikzA§Y +Z Beten(peven( ) —JkzAZven

m=1

n /O°° Ceven (3) poven (/\2’ y) e=ke) g3 (5.4)

where Im{A%%even} < 0 and A = /T — B2, with the branch of the square root chosen
so that Im{v/1 = 3%} < 0. In (5.3) and (5.4), ¥°%cven zre referred to as the cross
section functions corresponding to the continuous modal fields whereas 234 ven are
the corresponding cross section functions for the discrete modal fields associated with
the surface waves. The cross section function associated with the geometrical optics
fields is also ¥od®evn evaluated at A = A9°, where A#%is a parameter to be determined
later. As can be observed from (5.3) and (5.4), the cross section functions specify the
field behavior in the plane normal to the slab, and hence all information pertaining
to the fields interior to the slab are embedded in these functions. They will be
chosen to satisfy the orthogonality relations (where u(y) is u(y) or €(y) for E, or H,

polarization, respectively)

/OO ,\‘,J )(Az’y)dy = 0 for \# A (5.5

ot
i




105

o 2
/ cI>m(y)‘1’(A-y)dy _ 0 (5.6)

- u(y)

-7k2A and each continuous eigenmode

and thus each discrete eigenmode @, (y)e
W (A% y) e Y must satisfy the wave equation. Additional details pertaining to

the cross section functions are given in [43).

5.1.1 Exterior Cross Section Functions

To compute the cross section functions in the exterior slab region |y| > 7/2, we
recall that in accordance with the slab simulation based on the generalized sheet
transition conditions (GSTCs), the external fields satisfy the conditions (see chapter

two)

Un (——aiz> {Fetir} + Luty, (—8—3:3) {oyFe®+} = 0, ©>0 (57)
Us, <—8A_—f> {Fevent) + %un (—%) {gyF} = 0, 2>0. (53)

where F*= F(z,y = 7/2), 8z2F*= £F (z,y = 7/2), and dyF*= %F(z,y) ly=r/2-
The operators U, (—%2) are polynomials in —dz?/k? and their explicit forms for the
multilayer slab are derived in chapter two as a product of the functions
Gi; (Umy Km, Tm, —0x?/k?) which are completely dependent on the properties of the
m® layer. In these, the parameter u,, is pm for E, polarization and e, for H,
polarization, and Km = \/Im€m is the refractive index of the m® layer comprising
the slab. Because of the orthogonality conditions (5.5) and (5.6), each of the cross
section functions ¥ (A2, y) and ®,, (y) must satisfy the odd or even GSTC (5.7) or
(5.8). In view of this

sin |k —7/2)V1I=X2
o (32 y) = %—I{L{n () [ (|y|\/1—//\2) ]

+Uyz (A?) cos [k (Jy| — 7/2) VI=X? }
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Lpeven (A2,y> — {u21 (/\2) jSll’l

Uz (A?) Ga(1, 1, ly| — 7/2.4%)} (5.10)

where U;; (A?) are the same polynomials appearing in (5.7) and(5.8), and §;; represent
the infinite order form of the ¢,; layer operators given in chapter two. Once each of
the modes comprising (5.3) or (5.4) is substituted into (5.7) or (5.8), respectively, the
differentiation implied by —dz?/k? reduces to a multiplication by A? and the above -
o? and W are then readily shown to satisfy the associated GSTC.

The cross section functions W°¥ (A2 y) and Weven (A2, y) may also be rewritten in
the form

U (32 ) = I_z_lfidd(/\2) o=k (lyl-r/2W/T=E

+ly_'€idd (/\2) eI k(lyl=7/2)V1=32 (5.11)
¥
Jeven (/\2’y) = ive'n. (/\2) e—jk(|g,1i—4r/2)\/mf

_*_é-e_ven (/\2) eﬂ‘('ﬂ"'/z)vl_’\ (519)

for [y} > 7/2, where it can be easily shown that (5.11) and (5.12) satisfy the orthog-
onality relations (5.5) and (5.6). This representation is customarily employed for the
surface wave cross section functions. In particular we set

. ° 2
oot (y) = Wl ~imvi=r/an/i-() Hyl > /2 (5.13)

Y
O (y) = emkWI=T/2V1-(greny? yl > /2 (5.14)
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even,odd
A

where must now be chosen so that (5.13) and (5.14) satisfy their associated

GSTC. By substituting (5.13) and (5.14) into (3.7) and (5.8), respectively, we find
that \e¥even myst satisfy the polvnomial equations
1= (hedd)2y, ([A:fd] 2) + Uy ([Af:d] 2) -0 (5.15)
L= (Agem) Uy, (N2=)?) + Uy (P2e]?) = 0. (5.16)
and can be also identified as the poles of the slab plane wave reflection coefficient.

[t is also interesting to note that

podd ([/\ dd} ) o
O (y) = ™ ([)‘odd ) c |yl > /2 (5.17)
\DE’UCTL /\even
%" (y) (DT ); ly > 71/2 (5.13)

u22 ([/\cvcn] )

implying that for the multilayer slab the cross section function associated with the

discrete and continuous eigenmodes are of the same generic form given by (5.9) and

(5.10).

5.1.2 Interior Cross Section Functions

We consider now the determination of the cross section functions for the region
interior to the slab (i.e. in the region |y| < 7/2). For simplicity let us first assume
a single layer slab of thickness 7 = 27, whose upper face is located at y = .
In accordance with the preceeding, the cross section functions associated with the

external fields are given by
pode (/\2,3/) = IZ_I {‘hl (Ul"ﬁﬂ'la)\ ) G12(1, 1, [yl = 71, A%)
+412 (ula’cl’TI”\Z) ga(1,1,ly| - 7'1’)\2)}; lyl > 7 (5.19)
peven </\2.y> = {qgl (ul, K1, 7'1,)\2) Gi12(1, 1, jyl = 71, A%)

+(]22 <1ll,f€1.71,/\2) (2122(13 15 |y! - 7.1’/\2)}; 'yl > ™ ")-jl]‘
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obtained by setting U;; (A?) = qi; (u1, k1,71, A?) in (5.7), (5.9) and (5.10). These are

orthogonal functions and each must, therefore, satisfy the continuity conditions

\I,odd (/\2, Tl—) —_ lIIOdd (/\2’ T1+> (521)
1 odd (42 _=Y _ odd (y2 _+ = o
Oy (N rT) = oy U (W ) (522)
peven (/\2’ Tl—) = peven (A?', Tl+) (523)
Zaywm" (A%,77) = Gy (A% 1) (5.24)
(due to symmetry it is not necessary to enforce similar conditions at y=-—71). Itis

now straightforward to deduce that possible cross section functions satisfying (5.21)

- (5.24) are of the form

() = Byl ) (5.25)

et (A2 y) = gao(uy, a1, fy], A2) (5.26)

for [yl < m1. Also, in view of (5.21) - (5.24), the cross section functions for the surface
wave modes remain as given in (5.17) - (5.18), provided (5.25) and (5.26) are used
in place of poddeven

As a specific example, let us consider a low contrast O(71) representation of a
single layer. From chapter four, the truncated GSTC operators Ui; (—0z2?/k?) are

given to O(ry) by

o 2
Uy (—k—xz) =1 (5.27)

) = Jjkuin (5.28)

j——km‘ HLP (5.29)

Uy kul

and the corresponding g;; (A?) polynomials become

q11 (ul.fcl,rl,/\2) = ¢ (ul,m,rl,/\z) =1 (5.30)
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a2 (v mn V) = ke
‘121<U11K1,T1./\2) = ]z? (,{%_/\2)

and

q12 (U1$'€1’|y‘»/\2) = jkully!

422 (Ul,fﬁ, {yl,/\2> = 1

When these are substituted into (5.19), (5.20), (5.25) and (5.26) we obtain

; sin k(ly|—n )VI=R?)

1-A
vt (\y) = ';’—‘ +ikurricos [k (yl = n)VI=A%); |yl > 7
Jhulyl; lyl <
=2 (k7= A7) sin{k((y\l/—l_:});/l—_kf]
U (y) = % bcos [k(lyl = ) VISN]; gl >
1; ly] < 7

(5.36)

as the cross section functions for a single layer slab modelled with an O(r;) GSTC.

For the general case of a multilayer slab, it is necessary that each of the internal

cross sections functions satisfy the continuity conditions at all layer interfaces com-

prising the slab. From chapter two, we obtain that the boundary conditions at the

lth

interface between the L — and L* layer are

P (_%2) {ueF (z.y = vis,)}

. 2
Pt () o =i} =

it (<2 o (e = 52.)

k

(®.37)

#4747 (=55 ) {vP ey = o)} =039

where y; is the y coordinate associated with the top surface of the L layer and the
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! ( akf ) are given by

operators ’P,I;'

nL-1 A2 L-1 a 912 512
PE(-3F) PR (- :a)] I_Il [qnwm,nm,rm,—k%) Q12U oy T — )
pL-1(_ 3 3 az2 372
P'.‘l <— ks ) P (_T> m=1 Q2l(umv":m’rm7—kL2) Q22(umvﬂm17m’—%)
’ (5.39)

Possible interior cross section functions satisfying these conditions are
|y] 2 2
{ 3 (,\ ) qua(ur, sz, Jyl = yo-1,A?)

odd </\2,y) —
D (M) qualur, srs lyl = ym1, A9} yre < 1yl < yd5.40)
)

{D””" (A?) qua(ur, x, Jyl = yoo1,A?)

\reven (/\2, ]/) —
+ D5 (M%) qualur, ki, [yl — yi-, A} vier < lyl < yp41)
in which D®¥*"°?(A?) are to be determined by demanding that the interior and

exterior cross section functions are continuous at y = 7/2(= yr). Setting y = 7/2 in

the expressions for the external cross section functions (5.9) and (5.10), we obtain

T (N y =1/2) = U (N?) (5.42)
geven (/\2,y=7'/2) = Up(\?) (5.43)
and when these are equated to (5.40) and (5.41) we find
Pt (A2 y) = %{Pﬁ'l (32) qualur, ke, lyl = yz-1,A?)
+ PE (A qaalu, sz, lyl = yr-1,AD)} (5.44)
v (A%y) = PE(AY) qua(ur, syl = yoo1, A?)
+P57t (M) qua(ur, k1. ly] =y, A?) (5.45)

for yr > |yl > yr-1.
To derive the cross section functions for the other layers, the above procedure

may be repeated in a recursive manner until all layers are accounted for. Doing so
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we find that a complete representation of the cross section function everywhere is
L{n (/\2) (ilg(l. 1, Iyi — T/'z, /\2)

+U12 (M) Gaal L Lyl — 7/2,A%): | > /2

=

v (’\2’y) Pirt () qualws &1, ly] = yio1, A?) (5.46)

< |

+PEYAY) goalun, ki Jy] = yi-1, A% >yl > wie

Cqua(uy. k1, ), A®); ly] <
Uy (1\2) (}12(1- 1, !yl - 7'/'2- /\2)

+lUap (M%) Ga(1, 1, |y — 7/2,A%); ly| > /2
e () = PO quslen ne ] — v ) (547)

+P§;1 (/\2)‘122(1% Ki, lyl — yl—l»/\z); yi >yl > yiaa

[Q22(U1M\‘1a|y|7/\2)§ ly| <

when these are used in (5.3) and (5.4) in conjunction with (5.17) and (5.18) we have ;
a complete field representation for z > 0.

5.2 Recasting of the Dual Integral Equation Solution for a
Material Discontinuity

The expansions (3.3) and (5.4) can be used to represent the fields interior and
exterior to the discontinuous slab shown in Figure 5.1. For z > 0, the material
parameters used in the definition of the cross section functions (5.46) - (5.47) must
then be associated with the right hand portion of the slab. Similarly, for z < 0. the
material parameters in (5.46) - (5.47) must be those of the left hand portion of the
slab.

The diffraction by the slab discontinuity shown in Figure 5.1 was the subject of
chapter four where a complete expression for the scattered field was given by em-
ploying a GSTC simulation of the slab. However, owing to the non-uniqueness of the

GSTC, the resulting diffraction coeflicient was in terms of unknown constants whose
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determination was shown to require additional constraints. One such constraint is
the enforcement of a boundary condition demanding field continuity at the material
junction, but this requires a knowledge of the slab interior fields and the solution
given in Ch.apter four pertains only to external fields. However, as shown in the
preceeding section, the expansion (3.3) and (5.4) is valid everywhere when used in
conjunction with the cross section functions given in (5.46)-(5.47). Moreover, since
the expansion coefficients remain unchanged for the exterior and interior fields, once
determined, the representation 7.5} and (5.4) can be used to find the field every-
where. Since the exterior fleld associated with the slab discontinuity in Figure 5.1
has already been given in chapter four, it can be used to identify the expansion co-
efficients. This requires that the solution in chapter four is first recast into a form
compatible with that in (5.3) and (5.4), making possible the identification of the un-
known constants which can then be determined by enforcing field continuity across
the junction. In the following, upon stating the exterior solution we then proceed
with the identification of the expansion coeflicients.

In chapter four, the discontinuous multilayer symmetric slab shown in Figure 5.1

was simulated by the GSTCs

Oz? o ' dz? o

Uiy (‘ = ) {Fostr} + (—F> {oypeett}) =0, —co <o <549)
Ox? even ' dz* even 5

oy (=50 (o p g (S5 fvEm} =0 oo <o <t

Oz? o ' dz? . <
U (——k'z—) {F dd'+} + %Ufz <_F> {ayF dd'*’} =0, 0<z<oo (530)

. dz? ' 9z
w2 (—-:T) {Feoent) 4 %u;"z (——E;) {ayFeent} =0, 0<z <o (551)

with the superscripts 1 and 2 again denoting the material to the left and right of the

junction, respectively. The total field is the sum of the even and odd components
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and can be represented as

Flz.y) = F°%(z,y)+ F*™"(z,y)

where

Finc(Iay)+Fs(Iﬂy)Jf_FTCfl(‘r?y) y>T/2
= (5.52)
P (2,9) + F, (2,9) y<—7/2
Fine(z,y) = g k(z cos 65ty sino,) (5.53)

is the incident plane wave field. F,.s (x,y) denotes the reflected field, which from

(4.3) and (4.7) 1s giten by

e]kr sin éo

F,.eﬂ(x’y) = 5 [Reven + Rodd] Jk(zcospo~ysing,) ( ;

Ot
ot
s

-

with R%% and R¢*" given by (4.9) and (4.10), respectively. Similarly, Firans (2, y) is

the transmitted field. which from (4.6) and (4.8) is given as

Ftra'n. (xay) = —9_

ejkrsindbo
[Rcuen. . ROdd] ejk(rcos¢o+ysin¢a)
1 .

—
(1}
(W]}
Qi

—

-

Finally, F, (z.y) is the field scattered by the discontinuity and upon employing the

dual integral equation method in conjunction with the GSTC (5.48) - (5.51), we find

(from chapter four)

where
Fodd IC y

Zodd (

Fre (2.y)

ZCLCTL

Fy(z,y) = F(z,y) + F;*" (2,y) (5.56)

JIMVITRE (Vi)
—|y|/°°_7r /\+/\ odd(/\)godd( )godd( )godd( O)

Noga—1 Noga—1=m e-Jk|y|V1—/\§e‘]k1‘/\d/\

—AX +Z Z amn()\-l-)\o)m(,\)\o)"} = (5.57)

w j JTENVITR 2 (ViTE )
[-002—7" A+, gfticn(/\)glcticn(/\ ) even (/\)geuen Ao)

Neven—l Neuen—'1 m

—-Jklylx/l—_kf _Jk“dé\
—AA,) + Z Z brn (A 4+ A0)™ (AA,)™

\/1—\2 . jb)
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In these expressions, A\, = cos ¢,, and

GrE (N G ()

S GE (N
G (NG ()
G5 (M) G52 (V)

Zodd (—AA,)

Zeven (—AN,)

mt{l/7( fodd + Noga + 1)}

int {1/ (jvel‘ucn + Nreven + 1)}

(0 =ul (A7) + VI=xa, (1)
P (W) = U (%) + VI, (3
24 (0 =ud (W) + VI, (»?)

g5 (M) = udy (AF) + /1

g, (V)

2y (=AX) U (=A00) = Uy (=XA) U (=2N,)] (5.65)

(U (=A00) Uy (=AN) = Uy (= AN, U3, (—AN,)] (5.66)

O(A) of G (1?)
of godd ()‘2>
of geven (/\2)

(

Of geven /\2)

(5.67)

As seen, the scattered field expressions are in terms of unknown constants a.,

and bn, and to determine these via the procedure outlined above, we must first

rewrite F'(z,y) in a form compatible with (5.3) and (5.4). To do this we need to

identify from (5.52) to (5.58) the discrete and continuous spectral components. The

discrete portion of the spectrum is, of course, comprised of the geometrical optics

and the surface wave fields. These can be identified by detouring the integration path

n (5.57) and (5.58) as shown in Figure 5.3. In particular, for £ < 0 the integration

path may be deformed to one over the branch cut in the upper half of the A plane.

capturing any surface wave poles attributed to the zeros of G¢% (1)) and Gfve (A

Similarly, for z > 0. the integration path may be deformed to one over the branch



(c)

Figure 5.3: (a) C contour in the complex A plane. (b) Deformation for region 1
integrals. (c) Deformation for region 2 integrals.
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cut in the lower half of the A plane causing the capture of the geometrical optics pole
at A\ = —A, in addition to any surface wave poles attributed to the zeros of G5%* ()

and guen (

Througrh the above deformation of the integration paths in (5.57) and (5.58) we
obtain

FLotd(z,y) + Flo (z,y) + Fif(z,y) <0
Fotd(z,y) = 2 od (5.71)
f:éodd(l’ay)+Fs2&°dd($ay)+Fd1?f (z,y) >0

Fleven (2,y) + Fir (2,9) + FAS™ (2y) ¢ <0
Fevcn(l,‘y) = lel)
F2 even (.’E y) + F2 even (l‘ y ) + F;z;}en( ’y) r >0

where for y| > 7/2

1.0dd y elkzcosdo jkly|sin do odd - jk(|y|-7)sin é» .~
F ( y) = -]:;—I———-‘) {e +R1 € } (D.‘B)L
1k b0
p2.0dd . _ lej rcos ejk|y}sin¢o +Rodde—jk(|y|—r)sin¢o 574)
9 Y lyl 2 :
e]krcosdio

Fglc.’even (:I‘ y) = e]klylsinqbo + Rivcne—Jk(!yt—‘r)sinao} (5-"5)

e]kr cos ¢q {

Freven (o) = gl klvlsingo Revene—jk(lyl-f)sin%} (5.76)
g0 a

R sin o UE, (cos? ¢,) — UE (cos? ¢,) (5.77)
27 sing U (cos?,) + Zf" (cos? ¢o) a
sin ¢ U2, (cos® ¢,) — UZ, (cos? §,)
even — -7
i sin @,U3, (cos? ¢,) + Un (cos? @) (578)

. Odd( ) le,odd_Sin 8, JT(sxn¢o+\/ 1-(/\“'032) )e_jkm\lx,odd _jkly!m
su Y T0dd
A Ao (odd [(\1.0dd\ ~odd dd 8gdd (M)
|y| =1 + g (,\ ) G ()\) 0 (Ao)[ 18,\ e
=)

Noda=1 Nogg—1-m

. [Zodd( o/\l odd) + Z Z An ()\},odd+/\o) (\ladd/\ ) } (5.79)

2 odd kr (g — (3 2) 1230 Kyl —dd

2odd y Ve _sing, €2 (sm%+ TN g mskaat ot =ikl /1= (072
J

F lyl Z/\Zodd

o 2.0dd\ p aggdd(N)
+ A, glid (/\l o ) dd( )godd( ) [ 281,\ }A—/\szd
=

Noga—1 Noga—1-m

Zoaa (SAN) + % amn(A?'“"+M)"‘(A?’°‘*“‘Ao)"} (5.80)
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Nhgven ¥ (sin¢o+ 1—(*?'"‘")2) koAb een il /To (A )z
Fl even sIno, € ¢ ! € l
sw (I~ .7/) Z \1 even + A leven) 3¢V (1))
(=1~ ° geten (/\ ) gsuen( o)gfz_z_cn (Ao) _.1_5/\ ] Cen
A=)\

Neven—1 \‘ sven—1—-m

N Zeien (- AA1°U=")+ Z Z bmn(,\}‘““Ho)"‘(A}vmm)"l(s.sn

ke f . even
V& _sin¢ eJT(’““é"*V"(*‘ ) gmsharteren iyl /IOTR

, —sSin e
Fir™ () = °

A

=1 )‘Iz,euen + A, gle:/_en (/\?,cucn) even ( )geuen ( ) .BGSiL‘en(’\)J o peven

CV n- 1 VCVCTL 1. -m

. {Zeuen ( A, )‘2 cven) Z Z b (/\IZ,cuen + Ao)m </\12,even/\o‘) ’}(382)

n=0

y [ g JImAVIZR ke 12(\/i /i)

odd
Fdliff (z,y)= =

lyl Jep 27 A+ A, 2dd (\) G (A, )g"dd A) gOdd(,\ )
Noda—1 Noga—1-m e—;klyl\/l—_»\fe-ka,\d/\
[Zodd —AX,) +Z Z Gmn (A + A5)" (/\,\o)"} s (5.83)
R vt/ e R e AR
Fitff (z,y)= 1y| /CL o A+ A, odd (A) odd( )godd( )godd(’ 2)
Noddg—1 Noga—1-m e—]k|y|\/i:_/\76—]kr.\d/\
[zodd —AN,) +Z ﬂz_‘a Amn (A + A,)7 (/\/\o)"} Ny (5.84)

/1 =A2/1—A2 jkr/? V13241237
Fl‘.even (l‘ y) - / _J_ 1 Ao 1 /\ ( )
dif f ’ cv I A+ A, odd (/\) odd ) godd( ) godd (, o)

Neven=1 Neyen—1-m e—]k‘ylv 1-A§e—ijAd%' 5
£5.85)

: chen _/\)‘o bmn A /\o " A’\“o "
{ ( >+mZ=I1 go (A+2)™ (AXo) ViEyy
L3 ST (Vi)
( ’y)= By ;
ct 2xm

2,even
thff A+ X, odd()‘ godd(/\ ) odd( )godd( 5)
Neven‘l Neuen"l -m —_7)¢[y|\/1—,\5 __Jkl-\d/\
| Zeven (—AX,) b (A + X0)™ (AX)" £5.86
RPN +20)" (AXo) NS )

In these, the components F,, F,,, Fyiss denote the geometrical optics, surface wave,

and branch cut (or diffraction) contributions to the total fields. Also N}? is the

sw

number of captured surface waves (i.e., those with normalized propagation constants

A% such that Im {A}} > 0 or Im {A\?} < 0).
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To identify the expansion coefficients A,., Bm, and C (A) appearing in (5.3) and

(5.4), (5.73) -

(5.86) must first be rearranged. By making use of (4.9) -

(4.10). (5.61)

- (3.64), and (3.77) - (5.78), the geometrical optics terms can be rewritten as

Fglo,od;i (.1, y)

F2rad (2. y)

Fgl(;cvcn (l‘. y)

2,even
F (x,y)

The bracketed terms in

y SII](D e_]ka:cosqﬁoe]kﬂ'/?sméo

|y| godd(/\i’)
+Ul (/\ )cos(k sin ¢, [|y|

Y sind, glkT cosdo ik /2sindo [
yl G394 (A2)
+U3, <,\ ) cos (ksin ¢, [[y[

y smd} eJkJ:coscboe]k?/2smd>o

Wl r )
+U4], (,\ ) cos (ksin ¢, [|y]

y SlrlO e]k:rcosdaoejk‘r/QSméo

ry—{ geuen (/\2)

+UZ (/\ ) cos (ksin @, [ly] — 7/2] ]

Jsin(ksiné, [ly] — 7/2])
sin @,

u}l (»?)

—7/2]) (5.87)

( \2 Jsin(ksino, (ly] — 7/2])
sin ¢,

—7/2) (5.38)

)
sin @,
—dU]

u;l (A2

(5.89)

Jsin (ksin ¢, [|y] — 7/2])
sin ¢,

)
)

(\2) Jsin(ksin o, [|y] — 7/2";
)

(5.90)

(5.87) -

(5.90) are now readily recognized as the cross section

functions given by (5.46) and (5.47) once A, is set to cos ¢,. Thus, from (5.3) and

(5.4) the geometrical optics fields may be expressed as

Fy2% (z,y)
F2 odd (I y)
1,even

Fiotm (z,y)

FE™ (z,y)

A;dd (/\o) \Il‘;dd ()\3’ y) ejkxcosd)o
A3 (0) 3% (A2, y) ePhecosse
A;uen (/\o) \I,;ucn (/\3, y) ejkzcos¢o

A;vcn ()‘o) \I;;ven ()\3’ y) ejka:cosdao

where the A expansion coefficients are identified as

sin QS ejkr/? sin ¢o

odd
Al ("\0) odd (/\2)
) sin ¢oegkf/2sm¢°
g? (/\o)
cven sin ¢oejk1/2 sin ¢,
AT (AL)

gleven ()\g)

(5.91)

(5.93)

(5.94)

(5.95)

(5.96)
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even sin b, ejk"/zsiﬂd’o
AT ) = (

0
e
(7]

e

Also, lIfcl'dd‘e“" are the same as those given in (5.46)-(5.47) but are associated with

le odd,even

material parameters to the left of the slab and likewise are associated with

the material parameters to the right of the slab.
To identify the B expansion coefficients we observe that the surface wave terms

are already of the form appearing in (5.3) and (5.4) and can be readily rewritten as

Vl,odd

Fslzfdd(r’y) = i B[l,odd(/\o) [Zodd(_/\o)\zl.odd>

Nodd—1 Nogg=1-m

+3 Y am (A 0)T (A)"

m=1 n=0

wget (] ) et 5 09)

\2 odd

F?odd(I y) — z B2odd o [Zodd( )\)\2odd)

Nogd—1 Nogg—1-m

+5 S (/\?,odd + )‘o)m (/\;Z.odd/\o)ﬂjllpgdd ([/\2 odd] ,y) - jkzA? (3 100)

m=1 n=0
N1 even
; a)juen (l‘, y) — B{l even (/\o) [Zodd ( /\ /\1 even)
=1
Neven=1Neyen=1-m
+ bn (A 20) " (AP )"}wmn([ﬂ ever] ,y) -k 8T01)
" "~ N2 zven
F2 even (CL' y) — Z B? even [Zodd (_._Ao)\lz,eucn)

euen—l Neuen—l -m

+ Z Z b (/\2 even )m (/\IZ,cven/\o)"]\I];ven<[/\l2,even] 2,y> e ka/\gguib-z)

with
. —sin ¢O ejkr/z sin ¢ ;
Bl (),) = T T - — (5.103)
[EER] LG5 00 5t () G5 )
-
o jk7/2sin¢o
BEH (\) = ot . (5.104)

/\2 ,odd + /\o gffd_d (/\?,odd) ffi_d (/\o) [BGOdd(A)

dd
A ]\_\Z,Odd g§’+ (Ao)
A=)



leven —sin O, ej’”'/?sinéo
B: (/\ ) =
{ o \I,euen \ Igaven )
Ay + A, = Y ’auen )getcn (\l,eucn) gﬂ'en
EA A= \l‘ezen {
T
(3.103
RBleven \ —sin Qo elkT/2sine,
{ (:/ 9) - \2,even
M

+ A, gevcn (\2 evcn) gfien (/\OJ [Bgeuen(\

Y] sren
aA \ \2 even

24 (’\O)

(5.106)
It remains to identify the C expansion coeficients and to do this. it Is necessars
to employ the transformation j = /1= A2

Fl ’ii

Doing so in (5.83) permits us to rewrite
diff

! L.l = T oo
wap A Y= 27 T3 (= 50 +A,)
e]kf/z(\/l ,\°+J> —]k'y’@ _J'k: /1_'32 .
gfid( 1_32+é%) odd(/\ odd (M) ggid(/\o)
Noa

.[zodd( \/H) Zlvmzl G (,\o+ 1—,32)m(,\0\/1—7>nJ<(3.107»
m=1 n=0

where the branch of the square root is chosen so that Im(\/1=32
vanishingly smal

) >0 and § is a
| positive number. The integral may now be split into its positive
and negative portions and then recombined to obtain

1044( )= v ooJ' -3 1-A2 el*7/2\/1-3 7 dd( T=32, )\)
diff L. Y

[yl 0 2#\/_‘2'(\/1—_7?+ /\o) odd(/\ )g°dd(/lﬁﬂ-) odd(/\
{ e~ k(lvl-7/2)8 eIk(lyl=/2)p

_ e—ike\/1oR
(VP4 6) | or (VT 5)} @

where

(5.108)

Zia (\/1—52,&) s Zou (—Ao\/l—ﬁﬁ’)
Ac’o —11‘\70 -1-m m n
S5 am,,<Ao+</1—,52) (Ao\/l—ﬂz) (5.100)
m=] n=0



By invoking (5.61), we can show that
_)Jgodd (m)

3)* - UL (1= 3y

=ik (yl=7/2)3 e ik(lyl=7/2)3

G4 (VI=F7+6) G (VIm3i-¢)  Whi

i (e /9
. [ﬁm(“”y’ 203 (1= 87) + cos (k3 | — /2 Uy (1 - 32)}5.110)

3
where the term in square brackets is identified as ¥9% (1 — 32 y) as given in (5.46)
for {y| > r/2. Substituting (5.110) into (5.108) finally yields

i (e = [~ Co03) Zuaa (VI=3%0 ) 03 (1 = 3%, y) em4eV a5

(5.111)

with the expansion coefficient €244 (3) given by

Jj 3% /1= )2
7"\/1—;;)2(\/1—,32-%,\0)
ejkf/2\/i—_/\?,godd (m)
H:112)

Gt (VI=F) G5 (1) 692 () {[uh (1 = 3] = 3 0ty (1 = 39

In a parallel manner we obtain

ZOdd / Codd odd ( /1 ___,32’ /\o> lpgdd (l _ /32,y) e—jkr\/l—mdﬁ

Ci*(3) =

Fips (x.y)
(5.113)
Figr e = [ €™ (8) Zan < \/:550 w5 (1— 8 y) eV g
(5.114)
i (e,y) = [ C5(8) Zuven (V1I=820 ) 457 (1 = %, y) €742V 43
(5.115)
where

3even<\/1_321/\0> = Zeven <_)‘o 1_62>
‘Qeven—l ﬁcven‘“l"m m n
+ > Y bmn </\0+\/1—32) (Ao\/1—32)5‘11m
m=1

n=0



and the spectral expansion coeflicients are given by

odd | —J ‘32\/1——,?5
¢ (3 = BV (\/1_32+/\0>
/g (VI=F)
.gff‘l (ﬂ) 22 (X)) G54 (Ao {[ufl (1- 3% = 32 (U3, (1 — 3?)
cromgzy — I F1-%
| TVI=FE (VISP + )
eI/ Rgott (T
i (VIZ7) G5 0 et 0) ([ (1= 33 = 30t (1= 97
—j 32 /1-2
?\/1_‘37 (\/1_52 + /\o)
| g (I st
7 (VI=37) gg4 (A.) G324 (0) {[L{§1 (1= 32)% — 32U (1 - Bz)j'i}‘ -

From (5.3) and (5.4), the modal terms (5.91) - (5.94), (5.99)-(5.102), (5.111), and

[:'1

HA17
)

1

(v 4]

1%

~

}1

C"EUETL (3) -

(5.113) - (5.115) provide a field representation which is valid everywhere. Since the
odd and even fields are decoupled, two independent representations are obtained for

each of these fields.

5.3 Determination of the Constants

To determine the constants a,,, and b,,,, we may now enforce the tangential field

continuity conditions

F(;vz()_,y) = F<r=0+,y); lyl < 7/2 (5.120)
1 1
OzF (z,y) o = OzF(z,y) _o+ <T7/2 5.121
Uy (y) z (33,,7/)1._0 u2(y) T (‘T y)x_0+ lyl T/ ( )
with

prz2(y) E.-pol
ur2(y) = (5.122)

61'2 (y) Hz'pOl
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and the subscripts 1 and 2 denoting quantities attributed to the left and right side

of the slab. Substituting (3.71) - (3.72) into (3.120) and (5.121) , we obtain

Flott(z = 07y) + Fie*(z = 07y) + Fuff (2 =07,y)

= FR(z=0%y)+ FRM(z =00 y) + Ffy (= 0%y)  (5.123)
[FLt (z.y) + Fio (2.y) + Fiisf (@9)]
= [F;;odd( v) 2, odd( y) + ;‘;id (z,y } ot (3.124)

FJe (2= 07,y) + Fi (2 = 07.9) + Fiy™ (2 = 07y)
= FZee(z=0%y) + FI0 (=0 y) + i (z=00y)  (5.123)

L f eve even 1,even
ul(y)ax [F;C; ”(x,y)+F}w (z,y ) Fd:;f (x,y)}

=0

— — ax [Fg:.’oeuen( ) + Fg’zdjeuen (.IJ, ) F;}:x}en ( y)] o

to be solved for all a,,, and b,,. In particular, for an odd GSTC of O(N?4) to
tae left and of O(N;’dd) to the right of the discontinuity, the number of a,., to be

determined is equal to

v . (N (NViag+ 3 +N7
Nodd (\odd ~ 1) e Vsl E S )§ Niga+ N2y is even

¢ - Al
2 Nodd+N?Jdd
8 )

N, = (5.127)

To determine all a constants, (5.123) and/or (5.124) must then be enforced or sam-
pled at a minimum of N, points across |y| < 7/2 and 0 < ¢, < 7. Similarly for an

even GSTC of O(Nf¥") to the left and of O(N5¥*") to the right of the discontinuity,

— P

Noven (Nmn _ 1) ( dentNeen ( Leen+tNoven l’ N1 + N2

v even even
Yh = =

2 (Nelven+ euen) -1
8

1s even

; Zveluen + ‘Nezven 18 Odd
(5.128)

and thus. the b constants can be determined by enforcing (5.125) and/or (5.126) at
a minimum of .V, points.

Substituting for the fields in (5.123) and (5.124) as given in the previous section.
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we obtain the equations

Na

VE“(Nay) = Y Q% (m(p),n(p), ho,y) (5.129) -
p—l

Vst (Novy) = Zap 2 (m(p).n(p), Ao y) (5.130)

where a, = A (p)n(p) With

(n+m—1)(m+n)

- - +m (5.131)
m(p) = p—%lnt{ 1+8(‘;_1)—1}1nt{ 1+8({;—1)+1}(5.132)
n(p) = Int{ l+8({;—1)+1}—m(p) (5.133)

which are in accordance with the ordering of the amn constants as the order of the

GSTC is increased (see Figure 5.4). Also,

VET (Aoy) = AP(A) g (AZ, y) = 434 () U5 (32,)
1,0dd
< V’zw: Bl odd Zosd ( /\/\ll,odd) \I,;;dd ([’\ILOddr 7y>

N? 2, odd

_ Z BEod () Zodd( /\/\2odd) wgdd([/\Zodd] y)
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+\ Cot (3 O&A \/veo&fluu v d3
n\o, Cotd (3 A ,\T%\,veo& (1-8%y)d3  (5.134)

\/o.ﬁ&ﬁ\/oveo& A\/m Nv B \/omm&ﬁ\/oveo& Aym,wv

Ao, = 5
(A, 9) " () )
viedd 1 5dd pl,0dd
e N B) A, o o o
— MU { :HNAN\V A VNQ&& All\/>~f R&v ﬂH\H&R Aﬁ\/u &R v
=1
N229d 9 odd p2.0dd
S AR () 2,0dd\ |1, 0dd 2,0dd
+ 3 4 e (=Ar4) w5 Q» v
o . /1T _ 32 odd
_ \m 1 H mwv AQV No&& Al Hl\@nyov eo&& AH _ Twm v
1
oo /T — 32(odd
+\ 1-3 M/.Nv Amv No&& Al H.I@NYDV eba.h AH _ ww v
uz ly
(5.133)
(m.n, A, y) =
_(L ,odd

MU Bled /;y +\/§&v Ay \/:&Vaew&g\/:&

=1
/‘w odd

+ MU B () Ayo + \/w‘o&vs A\/o\/w.o&vz ot AT?& v
v
v

l\o QW&AEA Hlui.\/ovaA Hlmnyov GO&CI%
.r\oooﬁw&AEA Hl‘Q~+\/ov3A Hlmnyov GQ&CI@Q

ser (Aoyy) =
2».0&Q

Meu /Z&WHAM&C V A\/ +>Z&v A\/o\ca&v:em&Q»:&_ év
I=1 1

(5.136)

2».0&&

-3 ysamﬁwf (o #2754 (=) g (3] ")

+\ VI-FCT(8) (V=5 4 0) " (VI8 g (1 - g%y) s
+>ovsA Tmﬁov;ewacnuii

(5.137)

M @v
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Provided V7% are even, the integrals in (5.135) and (5.137) converge (see Table 5.1)

and (5.129) -

(5.130) can be solved for the constants a, by matching (5.129) at V4

points and (5.130) at V,, points such that V,; + N > NV,

To solve for the b, constants we substitute for the fields in (5.123) and/or (5.126).

giving

with

VE " (Aoyy)

Vaer (Aovy)

and

7o (A y)

‘even(/\o’y) — ZbQCW" (p), (p)’/\o,y) (5.138)
A\vb
Vet (Aovy) = pr 5z (m(p),n(p). A y) (5.139)

AT () W (/\?,’, y) - A5 () w5 (A2,y)

\ .1, even

+ Z Bl even Zeven (_1\1\{1,euen) \pivcn ([/\Il‘even] 2 . y)
\“euen
— Z B(?.even (/\O) Z:ven <_)\/\I2,even) \1’3"6" ([/\f.et/enJ 2 ’ y)
=1

+ [0 (8) Zen (- 1=, ) Ugen (1 - 5%,y) 49

- /OOO CZeuen (6) chcn (— 1—-;32/\0) \I’;ven (1 ) dﬁ 3 140
/\OA;uen (/\0) n 2 /\o‘4§ven (A ) even 2
——U" (A% y) — ——\I/ A
ur(y) ! (%%9) uz (y) (%50)
NLEUE™ | 1even pl,even
RS /\ly Bl ' (/\0) l,even ( 1 even >
- Zeven [ — AN} \I/evm Ay
; up (y) (
N22Ven | 2 cven 2,even
n Z /\l B ()\o) chen ( /\/\2 e'uen lpevgn ( /\2 even )

uz (y)

/ \/1_:—7Ceuen chen <_M’\ ) \I,even (1 #32,3/)
+/ \/chm (8) Zcum (_ 1_ﬁ2/\>\peven (1 3. )

Ug y)

(5.141)



No# or |'N9% or | Junction | Branch cut integral | Order of branch

Ngver Ngren Field (odd or even) cut integrand

even even E.or H, | Fli(x=0"y) 13173
Fci2iff<$:o+w-3/) 1873

odd odd E.or H, | F}, (z=0".y) 13]~2
F2,,(z=0%y) 1812

even | odd E.ot H, | Fl; (2 =0"y) |81~/
Fiip(z=0%y) 18|32

odd even | E,or H, | Fl;(z=0",y) |81~/
Flip(z=0%y) 8|3/

even even H,or E, Fz},-ff (z=0".y) |3|2
Fli(z=0%y) 18]~*

odd odd Hyor E, | Fl(z=0",y) 18]~
Ffiff(xzm,y) 13~

even odd Hyor E, | Fl(z=0",y) |8]%/2
Fiys(x=0%y) |8~/

odd even Hyor E, | Fli;;(z=07y) |B|~1/?
FZ,,(z = 0%y) 8|~/

Table 5.1: Asymptotic behavior of integrand for the functions Fyss(z = 0%, y).
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soF (Aory) =
NLEven (lev ev
3 ’\l eLenBl‘ even (’\o)

2

=1 Uy (y)

\y2,cv¢n

B Z uz ()

+/ \/rjc'cuen : ( i /\o)m (ﬂ/\o)nq’ivm <1 _ 32,y) d3
/ \/1—__ch1611 ;

(,\o + /\}’cvm) " (/\o/\{l'evm) " goven ({l\ll,euen} 2 . ]j)

/\2 eLenBZ even (

o) ()\ 4+ /\2cucn>m (/\o/\lz,even) geven ((l mnj y)

2 (i=5+0,)" (Viman) wgen (1 - 5°,y) da

(5.143)

As before b, = bmpyn(p) With p, m(p), and n(p) given in (5.131)-(5.133). Again.
provided N{9" are even, the integrals in (5.141) and (5.143) converge and (5.138)
- {5.139) can be solved for the constants b, by matching (5.138) at N;, points and
(5.139) at Ny, points such that Ny + Ny, > N,. Results based on the solution of

(5.129) - (5.130) and (5.138) - (5.139) are considered next.

5.4 Validation of the Solution

In this section we address the validation of the GSTC solution. In particular,
several diffraction patterns are presented for selected material junctions and these
are compared with data obtained by other means. Issues related to the numerical
implementation are also discussed, including those pertaining to the convergence of

the solution and sampling criteria. Finally, some family curves are given for selected
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junction geometries in which the slab thickness is varied.

Figures 5.5. 5.6, and 5.7 present the echowidth of several recessed slab geometries.
These results were computed with the GSMF-GIBC solution of chapter three and the
more general GIBC solution of chapters four and five. The slab having 7 = .04, ¢ = 2,
= 1.2 (see Figure 5.5) may be adequately simulated by a low contrast second order
GIBC. whose solution is distinguished by the presence of a single unknown constant
byo. The computed value of this constant is given in Tables 5.2 and 5.3. which also
contain the values of the constants pertaining the simulations given in Figures 5.5
to 5.14. It is observed that the constants predicted by the GIBC and GIBC-GSMF
solutions are practically identical, and the corresponding diffraction curves overlay
one another for the PEC stub case as well as the PMC stub case.

The solution constants for the GIBC solution corresponding to the PEC stub were
determined by applying the boundary condition £, = 0 at the junction. In particular
it was found that a satisfactory solution for b;9 could be obtained by enforcing this
condition at a single point along the junction and for a single angle of incidence.
The nearly-exact values in Table 5.2 result from enforcing the vanishing electric field
at a single junction point for four distinct angles of incidence. We remark that
there is no need for additional sampling points along the junction, since the interior
¥ function is constant with respect to y for a second order low contrast GIBC. A
question may arrise, however, as to why it is desirable to sample at a greater number
of sampling points than the number of unknowns. This is because the GIBC solution
should ideally satisfy the boundary condition over all angles of incidence and at all
points on the junction. Hence by using a sampling grid which spans the junction,
it is possible to obtain a solution which satisfies the boundary conditions across

the junction in an average sense. Once the overdetermined system is generated. a
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solution for the constant(s) may be obtained by standard least-squares techniques.

With regard to the computation of the field quantities at the edge, care must
be exercised in evaluating the branch cut integrals. As seen from Table 5.1, the
convergence of these integrals is not always guaranteed, since the integrand must
have an asymptotic behavior of [A|717% with § > 0. It may then be deduced from
Table 5.1 that one cannot match E, or H, at the junction unless the order of all
GIBC/GSTC for finitely-conducting bodies is even. We remark, however. that al-
though the branch cut integrals for the PEC and PMC cases above always converge
(they behave asymptotically as [A|73/2 and |A|~3/2 respectively), their evaluation is
not trivial by virtue of the infinite limits of integration. Herewith the infinite interval
is transformed to a finite one. In addition, in case of a pole near the integration path, ]
the addition and subtraction process described in [51] is employed to regularize the
integrand.

In Figure 5.6, the slab thickness is increased to .1\ and it is now seen that
fourth order conditions are required, resulting in three constants to be determined.
It is found that nearly 12 junction constraints are needed to adequately specify the
constants by enforcing field continuity at three points across the junction for four
angles of incidence. The agreement between the GIBC, GIBC-GSMF, and GSMF-
exact are excellent, and the same is, of course, true for the GIBC and GIBC-GSMF
constants (see Table 5.2). Note that the error in setting the constants to zero in this
case is significant. The final recessed slab geometry has r = .4, € = 5, 4 = 3 modeled
by second order high contrast GIBCs. Again all solutions agree quite well as do the
values of the constant b, as given in Table 5.2.

Figures 5.8 to 5.14 present diffraction patterns for material half-planes of increas-

ing thickness and are compared to data from a numerical model. The numerical
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model was constructed by first generating the transient response of a finite length
slab using bandlimited frequency domain data. The contribution from the half-plane
edge was then extracted by time gating the transient response. This numerical model
is valid except near grazing, where the surface wave and ray field excited by the back
edge arrives at the front edge in concert with the incident plane wave. Figures 5.8 to
5.11 present the echowidth for low contrast simulations of a half-plane having € = 2,
pu = 1.2. Clearly, the agreement between the numerical data and GSTC solution is
excellent. The reader should also note the small values obtained for the constants as
the thickness tends to zero, and this is in agreement with the second order GST'C so-
lutions proposed in [53] and [54]. However, for thicker half-planes the constant plays
a more significant role as evidenced by the erroneous result predicted in Figure 5.11
when the constants are set to zero.

Data based on two high contrast simulations are presented in Figures 5.12 and
5.13 for a material half plane having ¢ = 5 and u = 3. Because of the higher
sampling required, numerical results could only be furnished for a thickness of up
to .03\ (see Figure 5.13). We observe that the results for the .01 A thick half-plane
given in Figure 5.12 are in agreement and the same is generally true for the curves in
Figure 5.13 despite the obvious instabilities of the numerical data. In Figure 5.14 a
GSTC simulation is constructed for a two layer half-plane having 7, = .003, ¢; =3,
uy =3 and 7, = .03, ¢ = 2, p; = 1.2. The agreement of the GSTC solution with
the numerical data is quite good except at edge on incidence, and judging by the
abnormal behavior of the numerical data in this region it is conjectured that these
data are in error.

Finally, in Figures 5.16 to 5.21, family curves are given for various half-planes

and grounded junctions. These are limited in thickness by computational restric-
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tions stemming from the rapid increase in the number of constants as the order is
increased. and additionally from the numerical intensiveness of the routine which
determines the unknown constants. It is, therefore, necessary that the proper order
(the one pféviding adequate simulation and converged results) of the GSTC be de-
termined beforehand. This can be generally found by leaving out the constants and
computing the diffraction coefficient for increasing order of GSTC until convergence
"= reached. The constants can then be determined for the order of the GSTC ren-
dering convergence. This procedure was found quite adequate and was employed to

generate the data in Figures 5.15 to 5.21.
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Figure 5.5: H, polarization backscatter echo width for a recessed slab with r — 4,
€ =2, p = 1.2 modeled by O(r) second order low contrast GIBC (see
Table 5.2 for constants).
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Figure 5.6: H. polarization backscatter echo width for a recessed slab with 7 — 1,

¢ = 2, p = 1.2 modeled by O(r?) fourth order low contrast GIBC (see
Table 5.2 for constants).



135

20.0
10.0 F
0.0 -
- i
© i
£ —10.0 F
,< b
< Besesmeoes
5 i
-20.0
[ GSMF modal solution (exact)
=30.0 I 2 order h.c. GIBC (GSMF)__
i 2" order he.GIBC
_40'0 -llIlllLLllLllllIlLlllLllllLll

0.0 300 600 900 1200 150.0 180.0
Angle in degrees

%
¢
E\\
T=4A,€=54.0001, L[L=3 /
b;\\\\\\{j\\\‘&\u ——PEC
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Table 5.2 for constants).



136

-10.0

’—-—-'

4 l L] LA l T ¥ L B | I T T T

o/\ in dB

O(7") l.c. GSTCs
Numerical

0.0 300 600 900 1200 1500 180.0
Angle in degrees

%
0

\\\\\\\\\\\\\\\\\\\\'V
2

1 T=.0054, €=24.0001, [=1.
ANAAALALRALLRARARRNAN N
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Figure 5.20: H, polarization backscatter echo width curves a grounded junctions,
with ¢y = 2, uy = 1.2, 1, = .025 and ¢; = 5, yy = 3. The first number
to the left of the colon denotes the O(7) of the l.c. GIBC for the left
hand slab and the first number to the right of the colon denotes the
O(x~1) of the h.c. GIBC for the right hand slab. The second number
on either side of the colon denotes the O(r) of the l.c. GIBC for the
free space slab needed to give the two sides the same thickness.
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Figure 5.21: H, polarization backscatter echo width curves a grounded junctions,
with €, =3, 4y =3, 7, = .05 and ¢; = 11, u, = 7. The first number
to the left of the colon denotes the O(x~1) of the h.c. GIBC for the
left hand slab and the first number to the right of the colon denotes the
O(x™') of the h.c. GIBC for the right hand slab. The second number
on either side of the colon denotes the O(r) of the l.c. GIBC for the
free space slab needed to give the two sides the same thickness.
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'FIGURE 5.5
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FIGURE 5.6
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FIGURE 5.7
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FIGURE 5.8
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FIGURE 5.9
3IBC

bl0 = .0022-3.0009

FIGURE 5.10
3IBC

b10 = .0008-3.2323

FIGURE 5.11
53IBC 2nd order

b10 = 0.0152-30.0166

3IBC 4th order

ald = =-0.0734+30.
a20 = -0.0022+30
D10 = 0.0350-30
520 = =-0.0013+30

b30 = -0.0022-30

0138

.0103

.0368
.0565
.0015

1530

GIBC-PEC STUB

bl0 = -0.0451+30.0213

GIBC-PMC STUB

b10 = 0.6875+30.3242

bll = -0.0408-30.0111
bll = -0.0410-30.0110
GIBC

bl0 = -0.0837+30.0489

all= 0.0145-30.0010

bll = 0.0146+30.0097
p21 = -0.0004+30.0125

bl2 = 0.0035-30021

Table 5.2: Values of solution constants for curves presented in Figures 5 to 12
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FIGURE 5.1z
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FIGURE 5.13
ald = -0.0798-30.0054

bl0 = 0.0171~30.0239 bll = 0.0090+30.0002
b20 = -0.0019+30.0011

FIGURES. 14
al0 = 0.0003-30.0000

bl0 = 0.0180-3j0.0102 bll = -0.0060+30.0002
b20 = 0.0002-30.0001

FIGURES.15

t=,005

bl0 = -.0000+3.0000
£t=.05

bl0 = .0022-3.0009
t=.10

bl0 = .0008-3.2323
t=,20

bl0 = 0.0152-30.0166

Table 5.3: Values of solution constants for curves presented in Figures 12 to 15



5.5 Summary

In this chapter a method was proposed and demonstrated for determining the
unknown constants. Specifically, an eigenfunction expansion was presented as a
representation for both the interior and exterior fields. The solution of chapter four
was then recast into this form, allowing the unknown constants to be determined
by imposing additional coucinuity conditions across the junction. Various scattering
patterns were given validating the derived diffraction solution for several materiz!

half-planes and junctions.



CHAPTER VI

SUMMARY

The goal of this dissertation was to develop a plane wave diffraction coeflicient
for thick multilayered symmetric slab junctions using simulations based on the gen-
eralized impedance boundary conditions and generalized sheet transition conditions. .
This task was accomplished in four chapters dealing with the derivation of the
GIBC/GSTC, the formulation and formal solution of the plane wave diffraction by
a class of slab junctions, and the subsequent resolution of the unknown constants
which arise in these solutions.

To model multilayered slab junctions, it was first necessary to develop GIBC
and GSTC for multilayered planar slabs, and this was the subject of chapter two.
Recurrence relations were initially developed to relate fields in the adjacent layers
of a multilayered structure, and these were subsequently used to derive infinite or-
der boundary/transition conditions, conveniently expressed in a matrix product with
each matrix corresponding to a layer. Low and high contrast approximations were
then introduced to approximate the individual elements of each layer-matrix leading
to a finite order GIBC/GSTC for the multilayered slab. Since each individual layer
in the slab was characterized by a separate matrix, a low or a high contrast approx-

imation could be employed for each individual matrix as dictated by the refractive
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index of the layer. The accuracy of the derived conditions was evaluated by com-
paring the GIBC/GSTC reflection coefficients to their exact counterparts and design
curves were given for various single layer geometries based on the maximum phasor
error of thé approximation.

In chapter three, the plane wave diffraction by a recessed slab in a ground plane
was formulated and solved via the GSMF in conjunction with the dual integral
equation method. The motivation for studying this geometry stemmed from the
availability of exact data for uniform slabs. It thus served as a reference for evaluating
the accuracy of GIBC in junction simulations. Furthermore, the employed GIBC
simulation resulted in a unique solution, thus bypassing the non-uniqueness issue
associated with GIBC/GSTC simulations of more arbitrary material junctions.

The diffraction by a material discontinuity in a thick dielectric/ferrite slab was
considered in chapter four. The slab was modeled by a distributed current sheet
obeying generalized sheet transition conditions (GSTCs). This representation was
then used to develop dual integral equations in terms of even and odd unknown
spectral functions, which were proportional to the sheet currents. The solution for the
spectra paralleled standard procedure but resulted in expressions involving unknown
constants, revealing the non-uniqueness of the GSTC. It was demonstrated that the
unknown constant(s) could be determined explicitly for the recessed slab discussed in
chapter three by comparison with the results therein and it was also shown that the
obtained solution reduces to simpler known solutions, including that for combinations
of resistive and conductive sheets junctions.

One way of determining the unknown solution constants discussed in chapter four
is to employ field continuity across the junction. This however requires knowledge

of the interior fields and in an effort to determine them, an eigenfunction decompo-



153

sition was developed for arbitrary symmetric multilayered slabs valid in the exterior
and interior regions. The solution given in chapter four was then recast in this form
permitting Fhe determination of the interior slab field via analytic continuation. The
unknown constants were then resolved by applying field continuity accross the junc-
tion. Specifically, a point matching scheme was proposed in which the junction was
sampled across its width for different angles of incidence. The resulting unique solu-
tion was then verified for a number of recessed slab geometries by comparison with
the GSMF solution in chapter three, and also for thin material half-planes whose
scattering patterns were computed numerically. It was observed that the constants
are very small for thin slab structures, but become significant with increasing slab
thickness. Finally, family curves were generated for a number of half-plane and junc- -
tion geometries, and it was found that the convergence of the GIBC/GSTC solutions
can be estimated by leaving out the solution constants.

Clearly, the most challenging part of this work was the determination of the
unknown solution constants. The mere fact that this was possible proved that the
GSTC/GIBC are useful for practical simulations. Certainly, the method used in
chapter five for determining the constants could be employed or paralleled in other
applications. However, as noted therein, the evaluation of the constants for higher
order GSTC simulations becomes numerically intensive and it would, therefore, be
desirable to find alternative means for accomplishing this. For example, instead
of point matching one could explore the orthogonality of the expansion modes or
perhaps use a more efficient evaluation of the integrals.

In this work we explored one application of the GSTC/GIBC simulation, that
of diffraction by multilayered material slab junctions. As can be expected there

are numerous other applications where the GSTC/GIBC can permit analytical solu-
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tions. Examples include the extension of this work to skew incidence; possible char-
acterization of junctions other than vertical where this solution may be employed
in conjunction with a numerical one; and the diffraction by material junctions on
curved surfaces at normal and skew incidences. Also, the characterization of multiple
diffraction effects among material junctions is a straightforward process following the

method already employed in [13].
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APPENDIX A

MULTIPLICATIVE SPLIT FUNCTIONS

In this appendix we consider the splitting of
G (\) =Ua (A?) + VI= AU () (A.1)

as a product of two functions, one of which is free of poles, zeros and branch cuts in
the upper half of the A plane and the other having the same properties in the lower

half of the A plane. That is, we seek to write G (A?) in the form
G(3) =6, (NG-(N (A.2)

where the superscript + and - indicate an upper or lower function, respectively.

Noting that

Us (A7) = %An 1= (A.3)
Np
Us (M) = 3 B, [1-27" (A1)

with Ny = Np or Ny = Ng + 1, we may rewrite G (\?) as
Ng n
G(\) =3 S. [VI—X] (A.5)
n=0

where Ny = Maz(2N4,2Ng + 1) and S, = A2 if n is even and S, = Bin-1y2 1f n

is odd. However, since we seek a multiplicative splitting of (A.5), a more convenicnt



Ng .
g@ﬁ:SﬁH(1+ 1'”) (A.6)

in which +; denote the zeros of the polynomial Zj\;so S (—/\)1. We immediately now

identify that each of the product terms in (A.6) can be factored as

S V1I=AZy

L S A, () M () (A7)
where
1-—2A
() S A A.S

is the split function characteristic to the impedance half plane having a constant
surface impedance 1/+ [34]. With the branch choosen so that Im(v/1-A?%) < 0,
M, (A7) is explicitly given by

My (%)  Im(3)<0
My (Aiy) = M_(=X7) = { in(2-v1=7%) (A.9)

oo Im(%) >0,
7T, (cos i 1/n) = VA (r/?\)/l_l[; V2 cos (1[3'2“—”1)] Ll + 12 cos (ﬂ%ﬂﬂ (A.10)
B0, (3r/2—a—0) ¥, (/2 — a+0)]
In this,
Im(n) 20
A =cosa
Im(Jf?ﬁ¥)50
6 = sin"!(n) with 0 < Re(#),
(A.11)

and U, (o) is the Maliuzhinets function [22] whose evaluation in algebraic form has

been given in [50]. We remark that in the limit as y — 0,

1—A2
NG

M, (\y—0)= (A.12)
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and as v — ¢

Mi(\iv— x)=1 (A.13)

The determination of G*(\) is now rather trivial. By substituting (A.7) into

{A.6) we easily obtain

Ns
G (A) = G- (=A) = /S5 [T M (A7) (A.14)
n=1
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